
Partial Derivatives

Before defining derivatives of functions of several variables, it is necessary to introduce their partial deriv-
atives. This is because the formulas for their derivatives involve formulas of their partial derivatives We
introduce partial derivatives through an example. To this end, consider the function f(x, y) = x+ x2 sin y.
You should have encountered it in the exercises. Its graph is given below and we have also highlighted its
"y = −π2 section", (obtained by fixing y at −

π
2 then vary x). The section is also drawn separately in the

next figure.
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Graphs of f and the "y = −π2 section"

By definition, the y = −π2 section is the curve r(x) =< x,−π2 , x+ x
2 sin

(
−π2

)
> = < x,−π2 , x− x

2 > It
is in the y = −π2 plane that is parallel to the xz plane. For all practical purposes, we may take it to be the
graph of z = x− x2. It is shown below.

A tangent

The section
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A tangent to the section at some point
(
x,−π2 , x− x

2
)
on the curve is also included. The slope of such a

tangent is called the partial derivative of f with respect to x at (x,−π2 ) and it is denoted by fx(x,−
π
2 ) or

∂f

∂x
(x,−π2 ). We pointed out that the section is practically the graph of the function z = x − x2, therefore

the slope of the tangent must be 1−2x. Using the notation we introduced, fx(x,−π2 ) = 1−2x. We chose to
fix y at −π2 purely arbitrarily. If we fix it at an arbitrary number d, we get the y = d section with formula

f(x, d) = x+ x2 sin d

The slope of the tangent to its graph at a point (x, d, f(x, d)) is called the partial derivative of f with respect

to x at (x, d) and it is denoted by
∂f

∂x
(x, d) or fx (x, d). Its formula is

fx (x, d) = 1 + 2x sin d.

Partial derivatives with respect to y are defined in the same way. We get an x-section by fixing x and
vary y. Say we fix x at 4.5 and vary y. We get points that lie on the curve

r(y) =< 4.5, y, 4.5 + 4.52 sin y >

It is highlighted in the graph to the left and drawn separately in the graph to the right.
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Graphs of f and the "x = 4.5 section" Graph of the "x = 4.5 section of f"

The slope of the tangent to the curve at (4.5, y, f(4.5, y)) is called the partial derivative of f with respect

to y at (4.5, y). It is denoted by
∂f

∂y
(4.5, y) or fy (4.5, y). Since the curve is in a plane parallel to the

yz plane, it is practically the graph of z = 4.5 + 4.52 sin y. Therefore, the slope of the tangent at a point
(4.5, y, f(4.5, y)) is 4.52 cos y, thus

fy (4.5, y) = 4.5
2 cos y

If we fix x at an arbitrary number c, we get the x = c section with formula

f(c, y) = c+ c2 sin y

The slope of the tangent to its graph at a point (c, y, f(y, c)) is called the partial derivative of f with respect

to y at (c, y), denoted by fy (c, y) or
∂f

∂y
(c, y). It has formula fy (x, d) = c2 cos y.

With the above examples in the background, we turn to the partial derivatives of a general function
f(x, y) of two variables. Let (c, d) be a point in its domain. Consider the y-section obtained by fixing y at
d and varying x. It is a function of one variable x and its graph is a curve

r(x) =< x, d, f(x, d) >
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The slope of the tangent to the curve at a point (x, d, f(x, d)) on the curve is called the partial derivative of

f with respect to x at (x, d). It is denoted by fx (x, d) or
∂f

∂x
(x, d) and it is obtained by simply computing,

in the usual way, the derivative of the function f(x, d) of one variable x.

Example 1 Let f(x, y) = x2 + 3y4 − 4ex2y. If we fix y at d we get the function f(x, d) = x2 + 3d4 − 4edx2 .
Its derivative as a function of one variable x is the partial derivative of f with respect to x at (x, d) and it
is given by fx (x, d) = 2x− 8dxedx

2

.

In general, we will ask for the partial derivative of f with respect to x at a point (x, y) in the domain of
f . It is then understood that you must regard y as a constant and determine the derivative of the function
f(x, y) of one variable x. In particular, if f(x, y) = x2 + 3y4 − 4ex2y is the function in the Example 1 then
fx (x, y) = 2x− 8yxex

2y.

Example 2 Let f(x, y) = 7 +
4x

y2
− 3 cosπxy2 + x− y. Then fx (x, y) =

4

y2
+ 3πy2 sinπxy2 + 1.

The partial derivative with respect to y of an arbitrary function f(x, y) is defined in a similar way. Thus
we consider an x-section of f obtained by fixing x at c and varying y. It is a function of one variable y and
its graph is a curve

r(y) =< c, y, f(c, y) >

The slope of the tangent to this curve at a point (c, y, f(c, y)) is called the partial derivative of f with respect

to y at (c, y). It is denoted by fy (c, y) or
∂f

∂y
(c, y). It is obtained by simply computing, in the usual way,

the derivative of the function f(c, y) of one variable y.

Example 3 Let f(x, y) = x2 + 3y4 − 4ex2y. If we fix x at c, we get the function f(c, y) = c2 + 3y4 − 4ec2y.
Its derivative as a function of one variable y is the partial derivative of f with respect to y at (c, y) and it is
given by fy (c, y) = 12y3 − 4c2ec

2y.

In general, we will ask for the partial derivative of f with respect to y at point (x, y) in the domain of
f . It is then understood that you must regard x as a constant and determine the derivative of the function
f(x, y) of one variable y. For example, if f(x, y) = x2 + 3y4 − 4ex2y is the function in example 1 then
fy (x, y) = 12y

3 − 4x2ex2y.; and if f(x, y) = 7 + 4x

y2
− 3 cosπxy2 + x − y is the function in Example 2 then

fy (x, y) = −
8x

y3
+ 6πxy sinπxy2 − 1.

Exercise 4

1. Let f(x, y) = xy+ x2y3 − x3 +3y. Verify that fx (x, y) = y+2xy3 − 3x2 and fy (x, y) = x− 3x2y2 +3

2. Complete the table

f(x, y) fx(x, y) fy(x, y)

x2 − y3 + xy − x− y

x4y3 + 5xy − x+ 2y
4x

3y
− 5y
7x

4xey − 7 tan 2y

x sin y − y2 sin 4x

sinxy + cosx− 3 sin y
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f(x, y) fx(x, y) fy(x, y)

sinx cos y − sinxy

4ex sin 2y − 5 tanxy

xe3xy + y3

ex cos y + 15x

4x arcsin 2y

5− 7x arctan y
x+ 2y

3x− y
6e

4x
y − y

4x

Partial Derivatives for Functions of Three or More Variables

Since we cannot draw graphs of function of three or more variables in 3-dimensional space, their partial
derivatives are defined without reference to graphs. Given a function f(x, y, z) of 3 variables x, y and z. its
partial derivative with respect to any one of them is obtained by fixing the other two variables then take

the derivative of the resulting function of one variable x. For example, given f(x, y, z) = z3 − 4y
3x
+ xyz,

its partial derivative with respect to x, denoted by fx or
∂f

∂x
, is obtained by fixing y and z then take the

derivative of the function x→ z3 − 4y
3x
+ xyz of one variable x. Thus

fx(x, y, z) =
4y

3x2
+ yz.

Its partial derivatives with respect to y and z are denoted by fy or
∂f

∂y
and fz or

∂f

∂z
respectively and they

are
fy(x, y, z) = −

4

3x
+ xz, fz(x, y, z) = 3z

2 + xy.

Exercise 5 Complete the following table:

f(x, y, z) fx(x, y, z) fy(x, y, z) fz(x, y, z)

4xyz − 3x4y2z3

z2 sinxy

exy tanπyz

y ln
(
1 + x2z2y

)
Formal Definitions of Partial Derivatives

Let f(x, y) be a function of two variables and (c, d) be a point in its domain. To determine fx(c, d), we
keep y fixed at d and vary x. The result is a function of one variable x which we may denote by u(x). Its
derivative at c is the number

u′(c) = lim
h→0

u(c+ h)− u(c)
h

= lim
h→0

f(c+ h, d)− f(c, d)
h
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Therefore

fx(c, d) = lim
h→0

f(c+ h, d)− f(c, d)
h

(1)

Note that when we keep y fixed at d and vary x, we get the set of points {(x, d) : x is a real number} which
lie on the straight line through (c, d), parallel to the vector i.

­4 ­3 ­2 ­1 1 2 3 4

­4

­2

2

4

*
(c,d)

A line segment through (c, d) parallel to the vector i.

This implies that fx(c, d) = lim
h→0

f(c+ h, d)− f(c, d)
h

is the rate of change of f along the line segment through

(c, d) parallel to i. For this reason, fx(c, d) is also called the directional derivative of f , (or simply the rate
of change of f), at (c, d) in the direction of the vector i.

To determine fy (c, d), we fix x at c and vary y, to get a function v(y) = f (c, y) of one variable y. Its
derivative at d is the number

v′(d) = lim
k→0

v(d+ k)− u(d)
k

= lim
k→0

f(c, d+ k)− f(c, d)
k

Therefore

fy (c, d) = lim
k→0

f(c, d+ k)− f(c, d)
k

(2)

This time, when we keep x fixed at c and vary y, we get the set of points {(c, y) : y is a real number} which
lie on the straight line that passes through (c, d) and is parallel to the vector j.

­4 ­3 ­2 ­1 1 2 3 4

­4

­2

2

4

*(c,d)

A line segment through (c, d) parallel to the vector j.
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Therefore fy (c, d) = lim
k→0

f(c, d+ k)− f(c, d)
k

is the rate of change of f along the line segment through (c, d)

parallel to j. Consequently, fy(c, d) is also called the directional derivative of f , (or simply the rate of change
of f), at (c, d) in the direction of the vector j.

We may generalize the above directional derivatives by considering the directional derivative of f at (c, d)
in the direction of an arbitrary nonzero vector u = u1i+ u2j.

­4 ­3 ­2 ­1 1 2 3 4

­4

­2

2

4

*
(c,d)

This requires us to evaluate f on a line segment through (c, d), parallel to the vector u. The points on the
line segment have the form (c+ u1t, d+ u2t) where t is any real number. Therefore we must compute the

limit of
f(c+ u1t, d+ u2t)− f(c, d)

t
as t tends to 0, denoted by Duf(c, d).

Example 6 Let f(x, y) = 3x2y, (c, d) be a point in the plane and u = u1i + u2j be a given vector. To
calculate the rate of change of f at (c, d) in the direction of u, we evaluate f at points (c+ u1t, d+ u2t) on
a line segment through (c, d) parallel to u then compute the following limit:

lim
t→0

f(c+ u1t, d+ u2t)− f(c, d)
t

Direct computations reveal that f(c+ u1t, d+ u2t)− f(c, d) = t
(
6u1cd+ 3c

2u2 + u
2
1td+ 2u1u2ct+ u1u2t

2
)
.

Therefore

Duf(c, d) = lim
t→0

f(c+ u1t, d+ u2t)− f(c, d)
t

= 6u1cd+ 3c
2u2

If the formula for f is not specified, we have to appeal to the Mean Value Theorem to determine an
expression for its directional derivatives. To this end, let f be an arbitrary function of two variables and
(c, d) be a point in its domain. We have to insist that its partial derivatives fx and fy are continuous on
some disc centred at (c, d). Intuitively, this means that if (x, y) is in some suffi ciently small disc, of radius
r, centred at (c, d) then fx(x, y) is approximately equal to fx(c, d) and fy(x, y) is approximately equal to
fy(c, d).
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More precisely, given any ε > 0 we can find a disc of radius r with the property if (x, y) is any point in the
disc then

fx(c, d)− ε < fx(x, y) < fx(c, d) + ε and fy(c, d)− ε < fy(x, y) < fy(c, d) + ε (3)

For simplicity of notation, denote the given vector by u = ai+ bj (instead of u1i+ u2j). Then the derivative
of f at (c, d) in the direction of u is

lim
t→0

f(c+ at, d+ bt)− f(c, d)
t

.

We may consider only those numbers t such that (c + at, d + bt) is in the above disc of radius r centred at
(c, d). To use the Mean Value Theorem, we write f(c+ at, d+ bt)− f(c, d) as

f(c+ at, d+ bt)− f (c, d+ bt) + f (c, d+ bt)− f(c, d)

The three points (c+ at, d+ bt), (c, d+ bt) and (c, d) are shown in the figure below.

Consider the term f(c+ at, d+ bt)− f (c, d+ bt). If we introduce the function w(x) = f(c+ x, d+ bt) then

f(c+ at, d+ bt)− f (c, d+ bt) = w(at)− w(0)

Note that w(x) is a function of one variable x. By the Mean Value Theorem, there is a number θ between 0
and at such that

w(at)− w(0) = (at− 0)w′(θ) = atw′(θ)

It turns out that w′(θ) = fx(θ, d+bt) and, because (θ, d+bt) is in the above disc, fx(θ, d+bt) is approximately
equal to fx(c, d). Therefore

f(c+ at, d+ bt)− f (c, d+ bt) ' atfx(c, d) (4)

If you want to be more rigorous than this, use (3) to deduce that atw′(θ) is between atfx(c, d) − |at| ε and
atfx(c, d) + |at| ε.
Handle f (c, d+ bt)− f(c, d) in a similar way to deduce that

f (c, d+ bt)− f(c, d) ' btfy(c, d) (5)

It follows from (4) and (5) that

f(c+ at, d+ bt)− f(c, d)
t

' atfx(c, d) + btfy(c, d)

t
= afx(c, d) + bfy(c, d)

This implies that

lim
t→0

f(c+ at, d+ bt)− f(c, d)
t

= afx(c, d) + bfy(c, d)

In other words, if f has continuous partial derivatives then its directional derivative at (c, d) in the direction
of a vector u = ai+ bj is

Duf(c, d) = afx (c, d) + bfy (c, d) = a
∂f

∂x
(c, d) + b

∂f

∂y
(c, d)
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When we apply this result to the function f(x, y) = 3x2y of Example 6 above we conclude that its
directional derivative at a point (c, d) in the direction of a vector u = u1i+ u2j is

u1fx (c, d) + u2fy (c, d) = u1 (6cd) + u2
(
3c2
)
= 6u1cd+ 3u2c

2

as we obtained directly.

For convenience, introduce the vector fxi + fyj. Then the directional derivative of f at (c, d) in the
direction of u = u1i+ u2j may be written as the scalar product

Duf(c, d) = (fxi+ fyj) · (u1i+ u2j)

You are going to run into fxi+ fyj ahead. It is given a special symbol which is ∇f , pronounced "Grad f",
(short for the gradient of f). Thus, by definition

∇f(x, y) = fx(x, y)i+ fy(x, y)j

Exercise 7

1. Let f(x, y) = x3y + y2x− 3. Use the definition:

(a) fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

to calculate fx(x, y).

(b) fy(x, y) = lim
k→0

f(x, y + k)− f(x, y)
k

to calculate fy(x, y).

(c) Duf(x, y) = lim
t→0

f(x+ u1t, y + u2t)− f(x, y)
t

, the directional derivative of f at (x, y) in the di-

rection of u = u1i+ u2j.

2. Find fx and fy given that f(x, y) =

a) 5− xy + 2x2y2 − 3x3y4 b) x sin y − y cosx+ 5xy c) 2yexy − 3x sinxy − 3x+ 2y

d) 4ex − x2 ln (2xy + 1) e) 4x− xy cos 3xy f) ex sinxy − y2 ln
(
2x2y + 1

)
− y2

4− x

3. Let f(x, y) be a given function,
{
(x, y, f(x, y)) : (x, y) ∈ R2

}
be its graph and (c, d, f(c, d)) be a point

on the graph. Then {(x, d, f(x, d)) : x ∈ R} and {(c, y, f(c, y)) : y ∈ R} are curves in the graph of f .
Determine tangents to these curves at (c, d, f(c, d)) and use them to show that −fx(c, d)i−fy(c, d)j+k
is a normal to the tangent plane at (c, d, f(c, d)). (This result is used in several parts ahead.) Now
show that the equation of the tangent plane to the graph of f(x, y) at (c, d, f(c, d)) is

z = (x− c) fx(c, d) + (y − d)fy(c, d) + f(c, d)

4. Calculate ∇f given that f(x, y) = sin 2x+ cos 3y − 4x2y3.

5. The gradient of a function f(x, y, z) of three variables is also denoted by ∇f and it is defined, as you
would expect, by

∇f = fx(x, y, z)i+ fy(x, y, z)j+ fz(x, y, z)k

Calculate ∇f given that f(x, y, z) =

a) x2yz + y2xz − z2xy b) x ln
(
x+ y2z3

)
c) zexy

Remark 8 In a number of applications, ∇ is regarded as a vector "operator" with i component
∂

∂x
, j

component
∂

∂y
and k component

∂

∂z
. It "operates" on a given function f to give a vector

∇f =< ∂f

∂x
,
∂f

∂y
,
∂f

∂z
>= fxi+ fyj+ fzk.
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Higher Order Partial Derivatives

As an example, consider the function f(x, y) = x cos y − 4x3y2 + 7x− 2. Its partial derivative with respect
to x is fx (x, y) = cos y−12x2y2+7 and its partial derivative with respect to y is fy (x, y) = −x sin y−8x3y.
These two are called the first order partial derivatives of f .

Since fx and fy are functions of x and y, we may consider calculating their partial derivatives. Take
fx (x, y) = cos y − 12x2y2 + 7. Its partial derivative with respect to x is denoted by (fx)x (x, y), which is

shortened to fxx (x, y), or
∂2f

∂x2
(x, y). Therefore

fxx (x, y) = 24xy
2

Its partial derivative of fx (x, y) with respect to y is denoted by (fx)y (x, y), which is shortened to fxy (x, y).

Another notation is
∂2f

∂x∂y
(x, y). Therefore

fxy (x, y) = − sin y − 24x2y

Likewise, the partial derivative of fy (x, y) = −x sin y− 8x3y with respect to x is denoted by fyx (x, y) or
∂2f

∂y∂x
(x, y). It is

fyx (x, y) = − sin y − 24x2y

The partial derivative of fy with respect to y is denoted by fyy (x, y) or
∂2f

∂y2
(x, y). Thus

fyy (x, y) = −x cos y − 8x3

The four functions fxx (x, y), fxy (x, y), fyx (x, y) and fyy (x, y) are called the second order partial deriv-
atives of f . The middle two, i.e. fxy (x, y) and fyx (x, y) are called its mixed order partial derivatives.
Note that, in this particular case, they are equal. For functions like this one, which have continuous partial
derivatives, that will always be the case.

In general, given a function f(x, y) of two variables, we may determine the partial derivatives of fx with
respect to x or y and the partial derivatives of fy with respect to x or y.

The partial derivative of fx with respect to x is denoted by fxx or
∂2f

∂x2
(x, y) and that with respect to y

is denoted by fxy or
∂2f

∂x∂y
(x, y).

The partial derivative of fy with respect to x is denoted by fyx or
∂2f

∂y∂x
(x, y) and that with respect to

y is denoted by fyy or
∂2f

∂y2
(x, y).

The four functions fxx, fxy, fyx and fyy are called the second order partial derivatives of f . If fx and fy
are continuous then fxy = fyx.

Exercise 9 Determine all the second order partial derivatives of f given that f(x, y) =

a) x2 − 3xy + 2y2 + 5x b) 5 cosx sin y c) x cos y − y cosx

d) x3 + x2y − 3y2 + 2y3 e) 4ex cos y f) 2exy (2 sinx− 3 cos y)
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