Partial Derivatives

Before defining derivatives of functions of several variables, it is necessary to introduce their partial deriv-
atives. This is because the formulas for their derivatives involve formulas of their partial derivatives We
introduce partial derivatives through an example. To this end, consider the function f(z,y) = z + 22 siny.
You should have encountered it in the exercises. Its graph is given below and we have also highlighted its
"y = —7 section", (obtained by fixing y at —7 then vary x). The section is also drawn separately in the
next figure.

Graphs of f and the "y = —7 section"

By definition, the y = —7 section is the curve r(z) =<z, — 3,2 + 22 sin (—%) > = <z,—3,T— 2 > It
is in the y = —7 plane that is parallel to the zz plane. For all practical purposes, we may take it to be the

graph of z = z — 22. It is shown below.
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A tangent to the section at some point (x, — 5, T — x2) on the curve is also included. The slope of such a

tangent is called the partial derivative of f with respect to = at (z,—7%) and it is denoted by f.(z,—%) or

of

the slope of the tangent must be 1 —22z. Using the notation we introduced, f.(z,—%) = 1 —2x. We chose to
fix y at —F purely arbitrarily. If we fix it at an arbitrary number d, we get the y = d section with formula

(z,—%). We pointed out that the section is practically the graph of the function z = z — 22, therefore

f(z,d) = x4+ 2*sind
The slope of the tangent to its graph at a point (z,d, f(x,d)) is called the partial derivative of f with respect
to z at (z,d) and it is denoted by ? (z,d) or f, (z,d). Its formula is
x
fo (z,d) =14 2zsind.

Partial derivatives with respect to y are defined in the same way. We get an z-section by fixing x and
vary y. Say we fix x at 4.5 and vary y. We get points that lie on the curve

r(y) =< 4.5,9,4.5 + 4.5%siny >

It is highlighted in the graph to the left and drawn separately in the graph to the right.

Graphs of f and the "z = 4.5 section" Graph of the "x = 4.5 section of f"

The slope of the tangent to the curve at (4.5,y, f(4.5,y)) is called the partial derivative of f with respect
0
to y at (4.5,y). It is denoted by 873]; (4.5,y) or f,(4.5,y). Since the curve is in a plane parallel to the

yz plane, it is practically the graph of z = 4.5 4+ 4.5%siny. Therefore, the slope of the tangent at a point
(4.5,y, f(4.5,y)) is 4.5% cos y, thus
fy (4.5,y) = 4.5% cos y

If we fix = at an arbitrary number ¢, we get the x = ¢ section with formula
fe,y) = c+ *siny
The slope of the tangent to its graph at a point (c,y, f(y, c)) is called the partial derivative of f with respect

a—f (c,y). It has formula f, (z,d) = ¢ cosy.
Y

With the above examples in the background, we turn to the partial derivatives of a general function
f(z,y) of two variables. Let (¢,d) be a point in its domain. Consider the y-section obtained by fixing y at
d and varying x. It is a function of one variable z and its graph is a curve

to y at (¢,y), denoted by f, (c,y) or

r(z) =<uz,d, f(z,d) >



The slope of the tangent to the curve at a point (x,d, f(z,d)) on the curve is called the partial derivative of

f with respect to x at (z,d). It is denoted by f, (z,d) or Pz (z,d) and it is obtained by simply computing,
x

in the usual way, the derivative of the function f(z,d) of one variable x.

Example 1 Let f(z,y) = 2® + 3y* — 4e™’Y. If we fix y at d we get the function f(x,d) = 22+ 3d* — 4ed2”.

Its derivative as a function of one variable © is the partial derivative of f with respect to x at (x,d) and it
is given by f, (x,d) = 2z — 8dzeds”.

In general, we will ask for the partial derivative of f with respect to x at a point (z,y) in the domain of
f. Tt is then understood that you must regard y as a constant and2determine the derivative of the function
f(x,y) of one variable x. In particular, if f(z,y) = 22 + 3y* — 4e ¥ is the function in the Example 1 then

fo (,y) = 22 — 8yze

z2y

4 4
Example 2 Let f(z,y) =7+ i; —3cosmay® +x —y. Then f, (z,y) = — + 3my? sin rxy? + 1.
Y Yy

The partial derivative with respect to y of an arbitrary function f(z,y) is defined in a similar way. Thus
we consider an z-section of f obtained by fixing x at ¢ and varying y. It is a function of one variable y and
its graph is a curve

r(y) =<cy, flce,y) >
The slope of the tangent to this curve at a point (¢, y, f(c,y)) is called the partial derivative of f with respect
to y at (¢,y). It is denoted by f, (c,y) or 50 (c,y). Tt is obtained by simply computing, in the usual way,
the derivative of the function f(c,y) of one variable y.
Example 3 Let f(x,y) = 22 + 3y* — 4e™’Y. If we fix x at ¢, we get the function fle,y) =c*+3y* — 47V,

Its derivative as a function of one variable y is the partial derivative of f with respect to y at (¢,y) and it is
given by f, (c,y) = 12y3 — 4c2eY,

In general, we will ask for the partial derivative of f with respect to y at point (z,y) in the domain of
f. It is then understood that you must regard x as a constant and degermine the derivative of the function
f(x,y) of one variable y. For example, if f(z,y) = 22 + 3y* — 4e” ¥ is the function in example 1 then

4
fy (@,y) = 120% — 422eV; and if f(z,y) = 7+ —i — 3coswy? + = — y is the function in Example 2 then
Yy
8z . 9
fy (z,y) = s + 6rzy sin rxy? — 1.
Exercise 4

1. Let f(z,y) = xy + 2%y — 2> + 3y. Verify that f, (x,y) = y+2zy® — 322 and f, (v,y) =z — 32?y* + 3

2. Complete the table

f(z,y) fe(,y) fy(z,9)

x27y3+zyfxfy

Y3 + bry — x + 2y
4x by

3y Tz
4xe¥ — Ttan 2y

xsiny — y? sin 4z

sinzy + cosz — 3siny




f(x7y) fw(x,y) fy(xvy)

sin x cos y — sin xy

4e” sin 2y — Stanxy

mel}wy + y3

e® cosy + 15z

4x arcsin 2y

5 — Tx arctany

T+ 2y
3z —y
z Y
6 K —_— —
c’ 4z

Partial Derivatives for Functions of Three or More Variables

Since we cannot draw graphs of function of three or more variables in 3-dimensional space, their partial
derivatives are defined without reference to graphs. Given a function f(z,y, z) of 3 variables z,y and z. its
partial derivative with respect to any one of them is obtained by fixing the other two variables then take

s 4y

the derivative of the resulting function of one variable z. For example, given f(z,y,2) = 2 3 + zyz,
x

0
its partial derivative with respect to x, denoted by f, or 8—f, is obtained by fixing y and z then take the
x

s 4y

derivative of the function x — 2° — 3 + xyz of one variable . Thus
x

_ 4y
T 3x2

fa(w,y,2) +yz.

g and f, or 8—f respectively and they
dy 0z

Its partial derivatives with respect to y and z are denoted by f, or
are 4
Jyl@y,2) = —otan fawy,2) =327 +ay,

Exercise 5 Complete the following table:
f(z,y,2) fa(,y,2) fy(x,y,2) fa(2,y,2)

dryz — 3xty?23

2% sinzy

e tanTyz
yln (1 + $222y)

Formal Definitions of Partial Derivatives

Let f(z,y) be a function of two variables and (c¢,d) be a point in its domain. To determine f,(c,d), we
keep y fixed at d and vary x. The result is a function of one variable x which we may denote by u(z). Its
derivative at c is the number

von wou(e+h)—ulc)
oS T o T

fle+ h,d) — f(e,d)
h



Therefore
f(C+h,d) —f(C,d)

fm(ca d) = ’lllino h (1)

Note that when we keep y fixed at d and vary x, we get the set of points {(z,d) : = is a real number} which
lie on the straight line through (¢, d), parallel to the vector i.

4T

(cd)

4+

A line segment through (c,d) parallel to the vector i.

fle+h,d) = f(c,d)

This implies that f;(c,d) = }lbirrb is the rate of change of f along the line segment through

(c,d) parallel to i. For this reason, f.(c,d) is also called the directional derivative of f, (or simply the rate
of change of f), at (¢, d) in the direction of the vector i.
To determine f, (c,d), we fix = at ¢ and vary y, to get a function v(y) = f (c,y) of one variable y. Its

derivative at d is the number

’U(d+k)7u(d) _ l,mf(C,d+k')*f(C,d)

k—0 k k—0
Therefore Hed 4 k) — f(e.d)
. c,a+ k) — flc,
fu(e.d) = Jim : 2)

This time, when we keep z fixed at ¢ and vary y, we get the set of points {(¢c,y) : y is a real number} which
lie on the straight line that passes through (c,d) and is parallel to the vector j.

4 p—
(c.d) 7
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24
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A line segment through (¢, d) parallel to the vector j.



fle,d+ k) = f(e,d)

Therefore f, (¢,d) = Ilm}) is the rate of change of f along the line segment through (¢, d)

parallel to j. Consequently, f,(c,d) is also called the directional derivative of f, (or simply the rate of change
of f), at (¢,d) in the direction of the vector j.

We may generalize the above directional derivatives by considering the directional derivative of f at (¢, d)
in the direction of an arbitrary nonzero vector u = u1i + usj.

4T

(cd)

4+

This requires us to evaluate f on a line segment through (c,d), parallel to the vector u. The points on the
line segment have the form (¢ + uit,d + ust) where ¢ is any real number. Therefore we must compute the

fletwt,d —|—tu2t) —fled) as t tends to 0, denoted by Dy f(c,d).

limit of

Example 6 Let f(x,y) = 32%y, (c,d) be a point in the plane and u = ui + usj be a given vector. To
calculate the rate of change of f at (c,d) in the direction of u, we evaluate f at points (¢ + uit,d + uat) on
a line segment through (c,d) parallel to u then compute the following limit:

i £t 1) = )
t—

Direct computations reveal that f(c+ uit,d+ uat) — f(e,d) =1t (6ulcd + 3c2ug + udtd + 2uyugct + ulthz).

Therefore

fle+uit,d +ust) — f(c,d)
t

Duf(c,d) = lim = 6uicd + 3c?usy

If the formula for f is not specified, we have to appeal to the Mean Value Theorem to determine an
expression for its directional derivatives. To this end, let f be an arbitrary function of two variables and
(¢,d) be a point in its domain. We have to insist that its partial derivatives f, and f, are continuous on
some disc centred at (¢, d). Intuitively, this means that if (z,y) is in some sufficiently small disc, of radius
r, centred at (¢,d) then f,(z,y) is approximately equal to f;(c,d) and f,(z,y) is approximately equal to
fy(cv d) .



More precisely, given any € > 0 we can find a disc of radius r with the property if (x,y) is any point in the
disc then

fz(cad)_5<.fz(x’y><f$(c’d)+€ and fy(c,d)—5<fy(x,y)<fy(c,d)+5 (3)

For simplicity of notation, denote the given vector by u = ai + bj (instead of u1i+ usj). Then the derivative
of f at (¢,d) in the direction of u is

}ir%f(c—&-at,d—i—tbt) — f(c,d).

We may consider only those numbers ¢ such that (¢ + at,d + bt) is in the above disc of radius r centred at
(¢,d). To use the Mean Value Theorem, we write f(c+ at,d + bt) — f(c,d) as

flc+at,d+bt) — f(c,d+bt)+ f(c,d+bt) — f(c,d)

The three points (¢ + at,d + bt), (¢,d + bt) and (¢, d) are shown in the figure below.

Consider the term f(c+ at,d + bt) — f (¢, d + bt). If we introduce the function w(z) = f(c+ x,d + bt) then
fle+at,d+bt) — f(c,d+ bt) = w(at) — w(0)

Note that w(z) is a function of one variable . By the Mean Value Theorem, there is a number 6 between 0
and at such that
w(at) —w(0) = (at — 0) w'(0) = atw'(0)

It turns out that w'(0) = f,(0,d+bt) and, because (8, d+bt) is in the above disc, f, (0, d+bt) is approximately
equal to f.(c,d). Therefore
fle+at,d+bt) — f(c,d+bt) ~atf.(c,d) (4)

If you want to be more rigorous than this, use (3) to deduce that atw’(6) is between at f,(c,d) — |at| e and
atfr(c,d) + |at|e.
Handle f (¢,d + bt) — f(c,d) in a similar way to deduce that

f(e,d+bt) — f(c,d) ~btfy(c,d) (5)
It follows from (4) and (5) that

f(chat,dthbt) — f(e,d) ~ atfﬁ(c,d);rbtfy(c,d) — afule.d) + b, (e d)

This implies that
}in%f(c—i- at,d—i—tbt) — f(e,d)

=afy(c,d)+bfy(c,d)

In other words, if f has continuous partial derivatives then its directional derivative at (¢, d) in the direction
of a vector u = ai + bj is
of of

Dy f(c,d) =afy (c,d) +bfy (c,d) = a%(c, d) + ba—y(c, d)



When we apply this result to the function f(z,y) = 322y of Example 6 above we conclude that its
directional derivative at a point (¢, d) in the direction of a vector u = uqi 4 ugj is

u fz (¢, d) + us fy (¢, d) = uy (6cd) + ug (302) = 6uyced 4 Jusc?

as we obtained directly.

For convenience, introduce the vector f;i + f,j. Then the directional derivative of f at (¢,d) in the
direction of u = u1i 4 usj may be written as the scalar product

Duf(c,d) = (fol + fyd) - (uri + uaj)

You are going to run into f,i+ f,j ahead. It is given a special symbol which is V f, pronounced "Grad f",
(short for the gradient of f). Thus, by definition

Vi(@,y) = folz,y)i+ fy(2, )
Exercise 7

1. Let f(x,y) = 23y + y*x — 3. Use the definition:
fla+hy)— f(z,y)

(a) fu(z,y) = }Liﬂ% to calculate fo(x,y).

h
k) —
(b) fy(z,y) :%iir%)f(x’ij ]3; f(@.y) to calculate fy(z,y).
flx+wut,y + ust) — f(x,y)

(¢) Duf(z.y) = im
rection of u = uii + usoj.

; , the directional derivative of f at (xz,y) in the di-

2. Find f, and f, given that f(x,y) =

a) 5 —zy + 22%y% — 323y* | b) xsiny —ycosx + 5xy | ¢) 2ye™ — 3xsinay — 3z + 2y

d) 4e® — 2%1In (2zy + 1) e) dx — wy cos 3zy f) e“sinzy —y*In (22%y + 1) — .

3. Let f(x,y) be a given function, {(m,y,f(x,y)) D (z,y) € R2} be its graph and (c,d, f(c,d)) be a point
on the graph. Then {(x,d, f(z,d)) : x € R} and {(c,y, f(c,y)) : y € R} are curves in the graph of f.
Determine tangents to these curves at (c, d, f(c,d)) and use them to show that — f,(c,d)i— fy(c,d)j+k
is a normal to the tangent plane at (c,d, f(c,d)). (This result is used in several parts ahead.) Now
show that the equation of the tangent plane to the graph of f(x,y) at (¢, d, f(c,d)) is

Z = ($ - C) fw(cv d) + (y - d)f’y(cv d) + f(C, d)
4. Calculate V f given that f(z,y) = sin 2x + cos 3y — 4x2y>.

5. The gradient of a function f(x,y,z) of three variables is also denoted by V f and it is defined, as you
would expect, by

V=foley i+ fy(z,y,2)j+ f-(z,y,2)k
Calculate V f given that f(x,y,z) =

a) 22yz +y?axz — 22y b) z1n (a: + y2z3) c) ze®

0
Remark 8 In a number of applications, V is regarded as a wvector "operator” with i component e j
4

9 9 " " ; ; ;
component B and k component 5 It "operates" on a given function f to give a vector
Yy z

_ 0L OFOF i s



Higher Order Partial Derivatives

As an example, consider the function f(x,y) = xcosy — 4a3y? + Tz — 2. Its partial derivative with respect
to x is f, (w,y) = cosy — 122%y? + 7 and its partial derivative with respect to y is fy (z,y) = —xsiny — 8xz3y.
These two are called the first order partial derivatives of f.

Since f, and f, are functions of z and y, we may consider calculating their partial derivatives. Take

fz (z,y) = cosy — 122%y? + 7. Its partial derivative with respect to x is denoted by (fz), (z,y), which is
2

0
shortened to fr. (z,y), or 22 J; (z,y). Therefore
x

fow (2, y) = 24zy?

Its partial derivative of f, (z,y) with respect to y is denoted by (fm)y (x,y), which is shortened to fgy (z,y).
2
Another notation is g (z,y). Therefore

0zdy

fxy (x,y) = — siny — 24m2y

Likewise, the partial derivative of f, (z,y) = —z siny — 8z%y with respect to x is denoted by fy, (z,y) or
0% f
—_— It
fyz (xvy) = —siny — 24$2y
2

0
The partial derivative of f, with respect to y is denoted by f,, (z,y) or a—‘é (z,y). Thus
Y

fyy (,y) = —xCosy — 813

The four functions fr. (z,y), foy (z,Y), fys (z,y) and fy, (z,y) are called the second order partial deriv-
atives of f. The middle two, i.e. f3y (2,y) and fy, (z,y) are called its mixed order partial derivatives.
Note that, in this particular case, they are equal. For functions like this one, which have continuous partial
derivatives, that will always be the case.

In general, given a function f(x,y) of two variables, we may determine the partial derivatives of f, with

respect to « or y and the partial derivatives of f, with respect to = or y.
2

0
The partial derivative of f, with respect to x is denoted by f., or 8—]; (z,y) and that with respect to y
x
2

axay(x,y)-

The partial derivative of f, with respect to « is denoted by f,, or

is denoted by f,, or
82
D00a (z,y) and that with respect to
yox
. 0% f
y is denoted by f,, or e (z,y).

The four functions fiz, foy, fyz and fyy are called the second order partial derivatives of f. If f, and f,
are continuous then fuy, = fyz-

Exercise 9 Determine all the second order partial derivatives of f given that f(z,y) =

a) % — 3zy + 2y% + bz b) 5cosxsiny ¢) xcosy — ycosx

d) o +a%y— 3y +2° e detcosy  f) 26" (2sinz — 3cosy)



