
The Cross Product of Two Vectors

In proving some statements involving surface integrals, there will be a need to approximate areas of segments
of the surface by areas of parallelograms. Therefore it is useful to introduce a method of computing areas
of parallelograms in space. For the area of a parallelogram determined by two vectors, we use the "cross

product" of the vectors. To define this, consider vectors
→

OP = u =< u1, u2, u3 > and
→
OR = v =< v1, v2, v3 >

shown below.
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Form the parallelogram OPQR which has u and v as two of its sides and let A be its area.
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Let the angle between the two given vectors be θ. We may assume that 0◦ < θ < 180◦. From our knowledge
of areas of parallelograms

A = ||u|| ||v|| sin θ (1)

The definition of the dot product of u and v implies that cos θ =
u · v
||u|| ||v|| . Since sin θ =

√
1− cos2 θ, it

follows that

A = ||u|| ||v|| sin θ = ||u|| ||v||

√
1−

(
u · v
||u|| ||v||

)2
which simplifies to

A =

√
||u||2 ||v||2 − (u · v)2 (2)

Since ||u||2 = u21 + u
2
2 + u

2
3, ||v||

2
= v21 + v

2
2 + v

2
3 and (u · v)

2
=(u1v1 + u2v2 + u3v3)

2, (2) becomes

A =

√
(u21 + u

2
2 + u

2
3) (v

2
1 + v

2
2 + v

2
3)− (u1v1 + u2v2 + u3v3)

2
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Expanding
(
u21 + u

2
2 + u

2
3

) (
v21 + v

2
2 + v

2
3

)
gives

||u||2 ||v||2 = u21v
2
1 + u21v

2
2 + u21v

2
3 + u22v

2
1 + u22v

2
2 + u22v

2
3 + u23v

2
1 + u23v

2
2 + u23v

2
3

To easily expand (u1v1 + u2v2 + u3v3)
2, we use the fact that (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc.

The result is

(u · v)2 = u21v
2
1 + u22v

2
2 + u23v

2
3 + 2u1v1u2v2 + 2u1v1u3v3 + 2u2v2u3v3

Therefore ||u||2 ||v||2 − (u · v)2 may be written as(
u21v

2
2 − 2u1v1u2v2 + u22v

2
1

)
+
(
u21v

2
3 − 2u1v1u3v3 + u

2
3v
2
1

)
+
(
u22v

2
3 − 2u2v2u3v3 + u

2
3v
2
2

)
(3)

The expressions in parentheses can be factored! When we do so, (3) becomes

(u1v2 − u2v1)2 + (u1v3 − u3v1)2 + (u2v3 − u3v2)2

Now the area of the parallelogram may be written as

A =

√
(u1v2 − u2v1)2 + (u1v3 − u3v1)2 + (u2v3 − u3v2)2

This is really the norm of some vector with components± (u1v2 − u2v1), ± (u1v3 − u3v1) and± (u2v3 − u3v2).
A convenient choice, (because, as you will soon find out, it gives a vector that is perpendicular to u and v),
is

(u2v3 − u3v2) i− (u1v3 − u3v1) j+ (u1v2 − u2v1)k.
We call it the cross product of u =< u1, u2, u3 > and v =< v1, v2, v3 >, and denote it by u× v. We have
therefore shown that the area of the parallelogram is ||u× v||. A formal definition of u× v is the following:

Definition 1 The cross product of two given vectors u =< u1, u2, u3 > and v =< v1, v2, v3 > is denoted by
u× v and is defined by

u× v =(u2v3 − u3v2) i− (u1v3 − u3v1) j+ (u1v2 − u2v1)k

We also refer to u× v as the vector product of u and v, because, unlike u · v, it is a vector.
An easy way of remembering u× v is to view it as the "determinant"∣∣∣∣∣∣∣∣∣∣

i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣
Examples:

1.

(a) i× j = k (b) j× k = i (c) k× i = j (d) j× i = −k (e) k× j = −i

(f) i× k = −j (g) i× i = 0 (h) j× j = 0 (i) k× k = 0

2. If u = (3, 1,−2) = 3i+ j− k and v = (−1, 0, 4) = −i+ 4k then

u× v =(4− 0) i− (12− 2) j+ (0 + 1)k =4i− 10j+ k

Remark 2 The area of the parallelogram OPQR, by formula (1), is ||u|| ||v|| sin θ. Therefore ||u× v|| =
||u|| ||v|| sin θ, hence u× v is a vector with magnitude ||u|| ||v|| sin θ. Its direction is determined by the
following right-hand rule: Imagine rotating u about the origin, towards v. Now imagine turning an ordinary
screw in the same way. The direction of u× v is given by the direction in which the screw moves. This is
in perfect agreement with results i× j = k, j× i = −k, etc in the above example
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A number of useful properties of the cross product are given by the following theorem

Theorem 3 Let u, v and w be given vectors and λ be a real number. Then

1. v × u = −u× v . Thus the cross product operation is NOT commutative.

2. u× (λv) = λu× v.

3. u× 0 = 0. Here, 0 is the zero vector < 0, 0, 0 >.

4. u× v is orthogonal to u and it is also orthogonal to v.

5. u× (v +w) = u× v + u×w. In other words, the cross product operation is distributive with respect
to addition.

6. If u =< u1, u2, u3 >, v =< v1, v2, v3 > and w =< w1, w2, w3 > then

u · v ×w =

∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣
7. u · (v ×w) = (u× v) ·w

8. If u× v = 0 then one of the two vectors is a scalar multiple of the other. Conversely, if one of u,v is
a scalar multiple of the other then u× v = 0.

To prove these claims, let u =< u1, u2, u3 >, v =< v1, v2, v3 > and w =< w1, w2, w3 >.

1. By definition,

v × u =

∣∣∣∣∣∣∣∣∣∣
i j k

v1 v2 v3

u1 u2 u3

∣∣∣∣∣∣∣∣∣∣
and u× v =

∣∣∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣
The first one expands as (v2u3 − u2v3) i − (v1u3 − u13v3) j + (u2v1 − u1v2)k and the second one as
(u2v3 − v2u3) i− (u13v3 − v1u3) j+(u13v2 − u2v1)k. Clearly, the second one is the negative of the first
one, therefore v × u = −u× v.

2. Since λv =< λv1, λv2, λv3 >,

u× (λv) =

∣∣∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

λv1 λv2 λv3

∣∣∣∣∣∣∣∣∣∣
= (λu2v3 − λv2u3) i− (λu1v3 − λv1u3) j+ (λu1v2 − λu2v1)k

The right hand side may be written as λ[(u2v3 − v2u3) i− (u1v3 − v1u3) j+ (u1v2 − u2v1)k] = λu× v

3.

u× 0 =

∣∣∣∣∣∣∣∣∣∣
i j k

v1 v2 v3

0 0 0

∣∣∣∣∣∣∣∣∣∣
= 0i+ 0j+ 0k = 0.
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4. To show that u× v is orthogonal to u, it suffi ces to show that their dot product is zero.

u · (u× v) = u1 (u2v3 − v2u3)− u2 (u1v3 − v1u3) + u3 (u1v2 − u2v1)
= u1u2v3 − u1v2u3 − u1u2v3 + u2v1u3 + u1v2u3 − u2v1u3 = 0,

That u× v is orthogonal to v is verified in the same way.

5. By definition, v +w =< v1 + w1, v2 + w2, v3 + w3 >. Therefore

u× (v +w) =

∣∣∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 + w1 v2 + w2 v3 + w3

∣∣∣∣∣∣∣∣∣∣
Expanding gives

[u2 (v3 + w3)− u3 (v2 + w2)] i− [u1 (v3 + w3)− u3 (v1 + w1)] j+ [u1 (v2 + w2)− u2 (v1 + w1)]k.

We may rearrange this as

[(u2v3 − v2u3) i− (u1v3 − v1u3) j+ (u1v2 − u2v1)k]
+ [(u2w3 − w2u3) i− (u1w3 − w1u3) j+ (u1w2 − u2w1)k]

which is equal to u× v + u×w

6. By definition,
v ×w = (v2w3 − v3w2) i− (v1w3 − v3w1) j+ (v1w2 − w1v2)k

It follows that u · (v ×w) = u1(v2w3 − v3w2)− u2(v1w3 + v3w1) + u3(v1w2 − w1v2). Expanding∣∣∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣
gives the same result.

7.

u · (v ×w) = u1v2w3 − u1v3w2 − u2v1w3 + u2v3w1 + u3v1w2 − u3w1v2
= (u2v3 − u3v2)w1 − (u1v3 − u3v1)w2 + (u1v2 − u2v1)w3 = (u× v) ·w

8. Suppose u×v = 0. We may assume that both vectors are nonzero because if one of them is zero then
it is a scalar multiple of the other vector. For example, if u is zero then it is a scalar multiple of v
since we may write

u = 0 = 0v

Let θ be the angle between the two nonzero vectors. Since u×v = ||u|| ||v|| sin θ = 0, and the product
||u|| ||v|| is nonzero, it follows that sin θ = 0. This in turn implies that θ = 0 or 180◦, therefore u is
a scalar multiple of v. Conversely, if say u is a scalar multiple of v, then u = λv where λ is a real
number, and so

u× v =λv × v =λ

∣∣∣∣∣∣∣∣∣∣
i j k

λv1 λv2 λv3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣
= 0i+ 0j+ 0k = 0
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Volume of a parallelepiped

We will run into volumes of parallelepipeds when handling volume integrals. Here is how to construct a
parallelepiped:

1. Start with a parallelogram OPQR, (an example is shown below).

O
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R

2. Translate a copy of OPQR by a vector u =
→
OS

S

O

Q

R

P
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3. Now join the corresponding corners of the two parallelograms to get a solid, called a parallelepiped.

S

O

P

R

Q

To calculate its volume, simply multiply the area of the parallelogram OPQR by the vertical distance
between the two parallelograms. The vertical distance from the point S to the parallelogram OPQR is

equal to the dot product of
→
OS and a unit vector perpendicular to the parallelogram. (This is a result of a

problem solved under dot products.) Since
(
→
OR

)
×
(
→
OP

)
is a vector perpendicular to the parallelogram,

the vertical distance between them, is∣∣∣∣∣∣∣∣
→
OS ·

(
→
OR

)
×
(
→
OP

)
∣∣∣∣∣∣∣∣( →OR)× ( →OP)∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
→
OS ·

(
→
OR

)
×
(
→
OP

)
∣∣∣∣∣∣∣∣( →OR)× ( →OP)∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ =
∣∣∣∣ →OS · ( →OR)× ( →OP)∣∣∣∣∣∣∣∣∣∣∣∣( →OR)× ( →OP)∣∣∣∣∣∣∣∣

We take the absolute value because the distance must be non-negative. But the area of the parallelogram is∣∣∣∣∣∣∣∣( →OR)× ( →OP)∣∣∣∣∣∣∣∣, therefore the volume of the parallelepiped is∣∣∣∣ →OS · ( →OR)× ( →OP)∣∣∣∣ ∣∣∣∣∣∣∣∣( →OR)× ( →OP)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣( →OR)× ( →OP)∣∣∣∣∣∣∣∣ =

∣∣∣∣ →OS · ( →OR)× ( →OP)∣∣∣∣
In general, let u =

→
OP , v =

→
OR and w =

→
OS be vectors that are not in the same plane.
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They generate a parallelepiped with volume |u · v ×w|. Using a property we derived above, it follows that
if u =< u1, u2, u3 >, v =< v1, v2, v3 > and w =< w1, w2, w3 > then the volume of the parallelepiped
determined by u, v, and w is the absolute value of∣∣∣∣∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣
Exercise 4

1. Compute the cross product u× v given that

(a) u = < 2, 0,−1 > and v =< −1, 0, 2 > . u = < 4, 4,−1 > and v =< −1, 1,−3 > .

u = < a, 2,−1 > and v =< −a, 0,−3 > . u = < a, a, 1 > and v =< a, a, a > .

2. Use the cross product of u = 3i− 2j+ k and v = 2i− j− 4k to calculate the angle between u and v.

3. Calculate the area of the parallelogram determined by the two vectors < 2,−1, 4 > and < 3, 3, 5 >.

4. Calculate the area of the triangle with vertices at (1, 1, 4), (2, 5,−3) and (−1, 2,−4).

5. Calculate the volume of the parallelepiped generated by the vectors < 4, 5, 0 >, < 3, 7, 0 > and <
1, 2, 5 >.

6. True or False? If u× v = u · v = 0 then u = 0 or v = 0. If true, prove it. If false, give a counterex-
ample.

7. Use appropriate properties of determinants to show that |u · v ×w| = |v ·w × u| = |w · u× v|
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