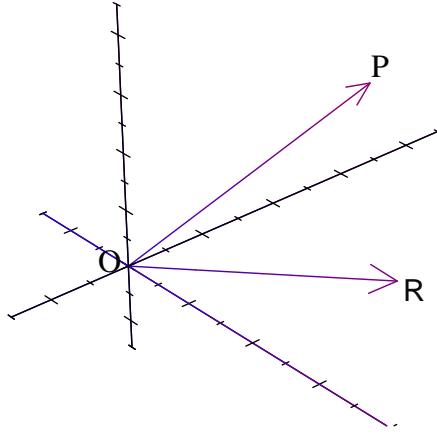
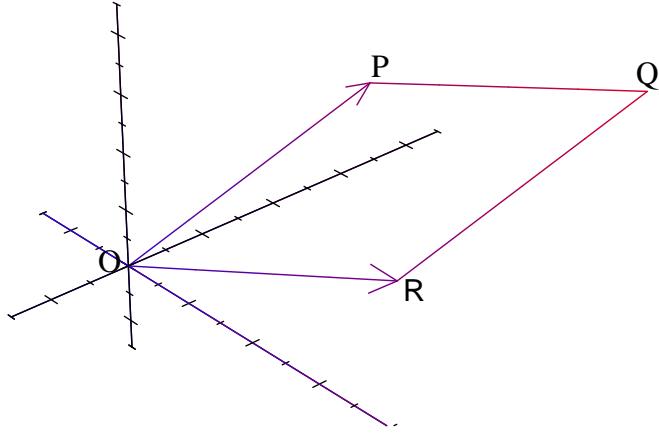


The Cross Product of Two Vectors

In proving some statements involving surface integrals, there will be a need to approximate areas of segments of the surface by areas of parallelograms. Therefore it is useful to introduce a method of computing areas of parallelograms in space. For the area of a parallelogram determined by two vectors, we use the "cross product" of the vectors. To define this, consider vectors $\vec{OP} = \mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{OR} = \mathbf{v} = \langle v_1, v_2, v_3 \rangle$ shown below.



Form the parallelogram $OPQR$ which has \mathbf{u} and \mathbf{v} as two of its sides and let A be its area.



Let the angle between the two given vectors be θ . We may assume that $0^\circ < \theta < 180^\circ$. From our knowledge of areas of parallelograms

$$A = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta \quad (1)$$

The definition of the dot product of \mathbf{u} and \mathbf{v} implies that $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$. Since $\sin \theta = \sqrt{1 - \cos^2 \theta}$, it follows that

$$A = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta = \|\mathbf{u}\| \|\mathbf{v}\| \sqrt{1 - \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \right)^2}$$

which simplifies to

$$A = \sqrt{\|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2} \quad (2)$$

Since $\|\mathbf{u}\|^2 = u_1^2 + u_2^2 + u_3^2$, $\|\mathbf{v}\|^2 = v_1^2 + v_2^2 + v_3^2$ and $(\mathbf{u} \cdot \mathbf{v})^2 = (u_1 v_1 + u_2 v_2 + u_3 v_3)^2$, (2) becomes

$$A = \sqrt{(u_1^2 + u_2^2 + u_3^2)(v_1^2 + v_2^2 + v_3^2) - (u_1 v_1 + u_2 v_2 + u_3 v_3)^2}$$

Expanding $(u_1^2 + u_2^2 + u_3^2)(v_1^2 + v_2^2 + v_3^2)$ gives

$$\|\mathbf{u}\|^2 \|\mathbf{v}\|^2 = u_1^2 v_1^2 + u_1^2 v_2^2 + u_1^2 v_3^2 + u_2^2 v_1^2 + u_2^2 v_2^2 + u_2^2 v_3^2 + u_3^2 v_1^2 + u_3^2 v_2^2 + u_3^2 v_3^2$$

To easily expand $(u_1 v_1 + u_2 v_2 + u_3 v_3)^2$, we use the fact that $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$. The result is

$$(\mathbf{u} \cdot \mathbf{v})^2 = u_1^2 v_1^2 + u_2^2 v_2^2 + u_3^2 v_3^2 + 2u_1 v_1 u_2 v_2 + 2u_1 v_1 u_3 v_3 + 2u_2 v_2 u_3 v_3$$

Therefore $\|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$ may be written as

$$(u_1^2 v_2^2 - 2u_1 v_1 u_2 v_2 + u_2^2 v_1^2) + (u_1^2 v_3^2 - 2u_1 v_1 u_3 v_3 + u_3^2 v_1^2) + (u_2^2 v_3^2 - 2u_2 v_2 u_3 v_3 + u_3^2 v_2^2) \quad (3)$$

The expressions in parentheses can be factored! When we do so, (3) becomes

$$(u_1 v_2 - u_2 v_1)^2 + (u_1 v_3 - u_3 v_1)^2 + (u_2 v_3 - u_3 v_2)^2$$

Now the area of the parallelogram may be written as

$$A = \sqrt{(u_1 v_2 - u_2 v_1)^2 + (u_1 v_3 - u_3 v_1)^2 + (u_2 v_3 - u_3 v_2)^2}$$

This is really the norm of some vector with components $\pm(u_1 v_2 - u_2 v_1)$, $\pm(u_1 v_3 - u_3 v_1)$ and $\pm(u_2 v_3 - u_3 v_2)$. A convenient choice, (because, as you will soon find out, it gives a vector that is perpendicular to \mathbf{u} and \mathbf{v}), is

$$(u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}.$$

We call it the cross product of $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, and denote it by $\mathbf{u} \times \mathbf{v}$. We have therefore shown that the area of the parallelogram is $\|\mathbf{u} \times \mathbf{v}\|$. A formal definition of $\mathbf{u} \times \mathbf{v}$ is the following:

Definition 1 *The cross product of two given vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is denoted by $\mathbf{u} \times \mathbf{v}$ and is defined by*

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}$$

We also refer to $\mathbf{u} \times \mathbf{v}$ as the vector product of \mathbf{u} and \mathbf{v} , because, unlike $\mathbf{u} \cdot \mathbf{v}$, it is a vector.

An easy way of remembering $\mathbf{u} \times \mathbf{v}$ is to view it as the "determinant"

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Examples:

1.

$$\begin{array}{lllll} \text{(a) } \mathbf{i} \times \mathbf{j} = \mathbf{k} & \text{(b) } \mathbf{j} \times \mathbf{k} = \mathbf{i} & \text{(c) } \mathbf{k} \times \mathbf{i} = \mathbf{j} & \text{(d) } \mathbf{j} \times \mathbf{i} = -\mathbf{k} & \text{(e) } \mathbf{k} \times \mathbf{j} = -\mathbf{i} \\ \text{(f) } \mathbf{i} \times \mathbf{k} = -\mathbf{j} & \text{(g) } \mathbf{i} \times \mathbf{i} = \mathbf{0} & \text{(h) } \mathbf{j} \times \mathbf{j} = \mathbf{0} & \text{(i) } \mathbf{k} \times \mathbf{k} = \mathbf{0} & \end{array}$$

2. If $\mathbf{u} = (3, 1, -2) = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = (-1, 0, 4) = -\mathbf{i} + 4\mathbf{k}$ then

$$\mathbf{u} \times \mathbf{v} = (4 - 0) \mathbf{i} - (12 - 2) \mathbf{j} + (0 + 1) \mathbf{k} = 4\mathbf{i} - 10\mathbf{j} + \mathbf{k}$$

Remark 2 *The area of the parallelogram $OPQR$, by formula (1), is $\|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$. Therefore $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$, hence $\mathbf{u} \times \mathbf{v}$ is a vector with magnitude $\|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$. Its direction is determined by the following right-hand rule: Imagine rotating \mathbf{u} about the origin, towards \mathbf{v} . Now imagine turning an ordinary screw in the same way. The direction of $\mathbf{u} \times \mathbf{v}$ is given by the direction in which the screw moves. This is in perfect agreement with results $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$, etc in the above example*

A number of useful properties of the cross product are given by the following theorem

Theorem 3 Let \mathbf{u} , \mathbf{v} and \mathbf{w} be given vectors and λ be a real number. Then

1. $\mathbf{v} \times \mathbf{u} = -\mathbf{u} \times \mathbf{v}$. Thus the cross product operation is NOT commutative.
2. $\mathbf{u} \times (\lambda \mathbf{v}) = \lambda \mathbf{u} \times \mathbf{v}$.
3. $\mathbf{u} \times \mathbf{0} = \mathbf{0}$. Here, $\mathbf{0}$ is the zero vector $\langle 0, 0, 0 \rangle$.
4. $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} and it is also orthogonal to \mathbf{v} .
5. $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$. In other words, the cross product operation is distributive with respect to addition.
6. If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ then

$$\mathbf{u} \cdot \mathbf{v} \times \mathbf{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$7. \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$

8. If $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ then one of the two vectors is a scalar multiple of the other. Conversely, if one of \mathbf{u}, \mathbf{v} is a scalar multiple of the other then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

To prove these claims, let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$.

1. By definition,

$$\mathbf{v} \times \mathbf{u} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \end{vmatrix} \quad \text{and} \quad \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

The first one expands as $(v_2 u_3 - u_2 v_3) \mathbf{i} - (v_1 u_3 - u_1 v_3) \mathbf{j} + (u_2 v_1 - u_1 v_2) \mathbf{k}$ and the second one as $(u_2 v_3 - v_2 u_3) \mathbf{i} - (u_1 v_3 - v_1 u_3) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}$. Clearly, the second one is the negative of the first one, therefore $\mathbf{v} \times \mathbf{u} = -\mathbf{u} \times \mathbf{v}$.

2. Since $\lambda \mathbf{v} = \langle \lambda v_1, \lambda v_2, \lambda v_3 \rangle$,

$$\mathbf{u} \times (\lambda \mathbf{v}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ \lambda v_1 & \lambda v_2 & \lambda v_3 \end{vmatrix} = (\lambda u_2 v_3 - \lambda v_2 u_3) \mathbf{i} - (\lambda u_1 v_3 - \lambda v_1 u_3) \mathbf{j} + (\lambda u_1 v_2 - \lambda u_2 v_1) \mathbf{k}$$

The right hand side may be written as $\lambda[(u_2 v_3 - v_2 u_3) \mathbf{i} - (u_1 v_3 - v_1 u_3) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}] = \lambda \mathbf{u} \times \mathbf{v}$

- 3.

$$\mathbf{u} \times \mathbf{0} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ 0 & 0 & 0 \end{vmatrix} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} = \mathbf{0}.$$

4. To show that $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} , it suffices to show that their dot product is zero.

$$\begin{aligned}\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) &= u_1(u_2v_3 - v_2u_3) - u_2(u_1v_3 - v_1u_3) + u_3(u_1v_2 - u_2v_1) \\ &= u_1u_2v_3 - u_1v_2u_3 - u_1u_2v_3 + u_2v_1u_3 + u_1v_2u_3 - u_2v_1u_3 = 0,\end{aligned}$$

That $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{v} is verified in the same way.

5. By definition, $\mathbf{v} + \mathbf{w} = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle$. Therefore

$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 + w_1 & v_2 + w_2 & v_3 + w_3 \end{vmatrix}$$

Expanding gives

$$[u_2(v_3 + w_3) - u_3(v_2 + w_2)]\mathbf{i} - [u_1(v_3 + w_3) - u_3(v_1 + w_1)]\mathbf{j} + [u_1(v_2 + w_2) - u_2(v_1 + w_1)]\mathbf{k}.$$

We may rearrange this as

$$\begin{aligned}&[(u_2v_3 - v_2u_3)\mathbf{i} - (u_1v_3 - v_1u_3)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}] \\ &+ [(u_2w_3 - w_2u_3)\mathbf{i} - (u_1w_3 - w_1u_3)\mathbf{j} + (u_1w_2 - u_2w_1)\mathbf{k}]\end{aligned}$$

which is equal to $\mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$

6. By definition,

$$\mathbf{v} \times \mathbf{w} = (v_2w_3 - v_3w_2)\mathbf{i} - (v_1w_3 - v_3w_1)\mathbf{j} + (v_1w_2 - w_1v_2)\mathbf{k}$$

It follows that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = u_1(v_2w_3 - v_3w_2) - u_2(v_1w_3 + v_3w_1) + u_3(v_1w_2 - w_1v_2)$. Expanding

$$\begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

gives the same result.

7.

$$\begin{aligned}\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) &= u_1v_2w_3 - u_1v_3w_2 - u_2v_1w_3 + u_2v_3w_1 + u_3v_1w_2 - u_3w_1v_2 \\ &= (u_2v_3 - u_3v_2)w_1 - (u_1v_3 - u_3v_1)w_2 + (u_1v_2 - u_2v_1)w_3 = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}\end{aligned}$$

8. Suppose $\mathbf{u} \times \mathbf{v} = \mathbf{0}$. We may assume that both vectors are nonzero because if one of them is zero then it is a scalar multiple of the other vector. For example, if \mathbf{u} is zero then it is a scalar multiple of \mathbf{v} since we may write

$$\mathbf{u} = \mathbf{0} = 0\mathbf{v}$$

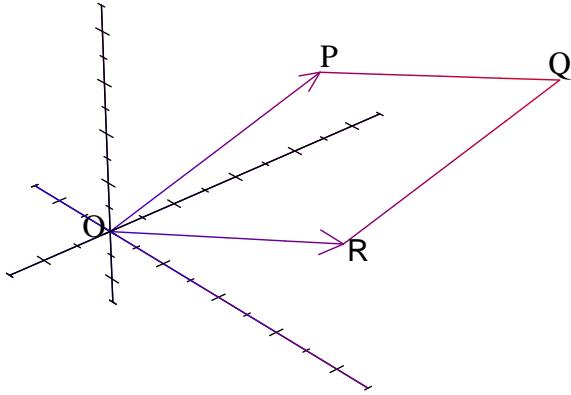
Let θ be the angle between the two nonzero vectors. Since $\mathbf{u} \times \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta = 0$, and the product $\|\mathbf{u}\| \|\mathbf{v}\|$ is nonzero, it follows that $\sin \theta = 0$. This in turn implies that $\theta = 0$ or 180° , therefore \mathbf{u} is a scalar multiple of \mathbf{v} . Conversely, if say \mathbf{u} is a scalar multiple of \mathbf{v} , then $\mathbf{u} = \lambda\mathbf{v}$ where λ is a real number, and so

$$\mathbf{u} \times \mathbf{v} = \lambda\mathbf{v} \times \mathbf{v} = \lambda \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \lambda v_1 & \lambda v_2 & \lambda v_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} = \mathbf{0}$$

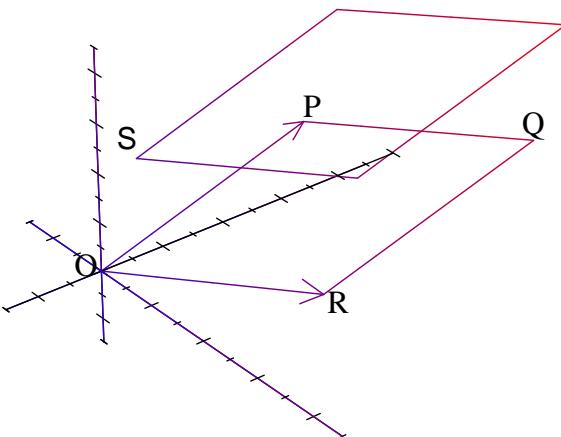
Volume of a parallelepiped

We will run into volumes of parallelepipeds when handling volume integrals. Here is how to construct a parallelepiped:

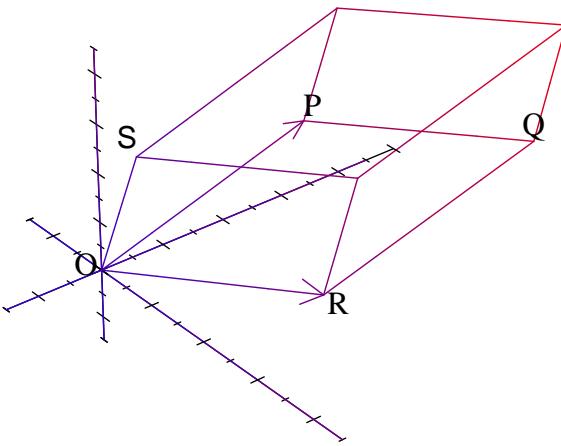
1. Start with a parallelogram $OPQR$, (an example is shown below).



2. Translate a copy of $OPQR$ by a vector $\mathbf{u} = \vec{OS}$



3. Now join the corresponding corners of the two parallelograms to get a solid, called a parallelepiped.



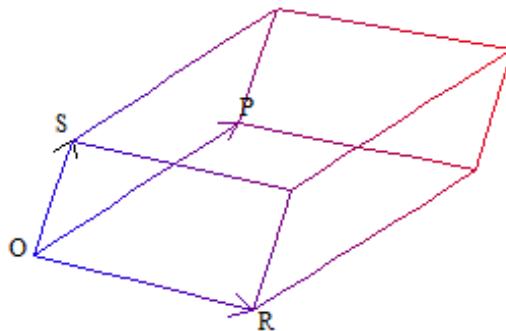
To calculate its volume, simply multiply the area of the parallelogram $OPQR$ by the vertical distance between the two parallelograms. The vertical distance from the point S to the parallelogram $OPQR$ is equal to the dot product of \vec{OS} and a unit vector perpendicular to the parallelogram. (This is a result of a problem solved under dot products.) Since $(\vec{OR}) \times (\vec{OP})$ is a vector perpendicular to the parallelogram, the vertical distance between them, is

$$\left| \vec{OS} \cdot \frac{(\vec{OR}) \times (\vec{OP})}{\|(\vec{OR}) \times (\vec{OP})\|} \right| = \left| \vec{OS} \cdot (\vec{OR}) \times (\vec{OP}) \right| / \left\| (\vec{OR}) \times (\vec{OP}) \right\| = \left| \vec{OS} \cdot (\vec{OR}) \times (\vec{OP}) \right| / \left\| (\vec{OR}) \times (\vec{OP}) \right\|$$

We take the absolute value because the distance must be non-negative. But the area of the parallelogram is $\|(\vec{OR}) \times (\vec{OP})\|$, therefore the volume of the parallelepiped is

$$\frac{\left| \vec{OS} \cdot (\vec{OR}) \times (\vec{OP}) \right| \left\| (\vec{OR}) \times (\vec{OP}) \right\|}{\left\| (\vec{OR}) \times (\vec{OP}) \right\|} = \left| \vec{OS} \cdot (\vec{OR}) \times (\vec{OP}) \right|$$

In general, let $\mathbf{u} = \vec{OP}$, $\mathbf{v} = \vec{OR}$ and $\mathbf{w} = \vec{OS}$ be vectors that are not in the same plane.



They generate a parallelepiped with volume $|\mathbf{u} \cdot \mathbf{v} \times \mathbf{w}|$. Using a property we derived above, it follows that if $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ then the volume of the parallelepiped determined by \mathbf{u} , \mathbf{v} , and \mathbf{w} is the absolute value of

$$\begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Exercise 4

1. Compute the cross product $\mathbf{u} \times \mathbf{v}$ given that
 - (a) $\mathbf{u} = \langle 2, 0, -1 \rangle$ and $\mathbf{v} = \langle -1, 0, 2 \rangle$. $\mathbf{u} = \langle 4, 4, -1 \rangle$ and $\mathbf{v} = \langle -1, 1, -3 \rangle$.
 - $\mathbf{u} = \langle a, 2, -1 \rangle$ and $\mathbf{v} = \langle -a, 0, -3 \rangle$. $\mathbf{u} = \langle a, a, 1 \rangle$ and $\mathbf{v} = \langle a, a, a \rangle$.
2. Use the cross product of $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} - \mathbf{j} - 4\mathbf{k}$ to calculate the angle between \mathbf{u} and \mathbf{v} .
3. Calculate the area of the parallelogram determined by the two vectors $\langle 2, -1, 4 \rangle$ and $\langle 3, 3, 5 \rangle$.
4. Calculate the area of the triangle with vertices at $(1, 1, 4)$, $(2, 5, -3)$ and $(-1, 2, -4)$.
5. Calculate the volume of the parallelepiped generated by the vectors $\langle 4, 5, 0 \rangle$, $\langle 3, 7, 0 \rangle$ and $\langle 1, 2, 5 \rangle$.
6. True or False? If $\mathbf{u} \times \mathbf{v} = \mathbf{u} \cdot \mathbf{v} = \mathbf{0}$ then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$. If true, prove it. If false, give a counterexample.
7. Use appropriate properties of determinants to show that $|\mathbf{u} \cdot \mathbf{v} \times \mathbf{w}| = |\mathbf{v} \cdot \mathbf{w} \times \mathbf{u}| = |\mathbf{w} \cdot \mathbf{u} \times \mathbf{v}|$