The Cross Product of Two Vectors

In proving some statements involving surface integrals, there will be a need to approximate areas of segments
of the surface by areas of parallelograms. Therefore it is useful to introduce a method of computing areas
of parallelograms in space. For the area of a parallelogram determined by two Vectors we use the "cross

product" of the vectors. To define this, consider vectors OP =u =< uy,ug, ug > and OR =V =< vy, V2, V3 >
shown below.

Form the parallelogram OPQR which has u and v as two of its sides and let A be its area.

Let the angle between the two given vectors be 8. We may assume that 0° < § < 180°. From our knowledge

of areas of parallelograms
A= il [Iv]|sing (1)

The definition of the dot product of u and v implies that cosf = m Since sinf = /1 — cos? 6, it
u|| ||v

2
= [[u]| [[v]|sin6 = [[ul| IIVII\/ )
IUII ||V||

A= /Il WIP = (- v)? ()

Since [|ul|” = u2 + u2 + u2, ||v|]> = v2 + vZ + 02 and (u - v)® = (uyv1 + uzvs + usvs)?, (2) becomes

follows that

which simplifies to

A= \/(u% +u2 + u?) (02 4 02 4 02) — (U vy + ugvy + usvs)’



Expanding (u% +ud + u%) (U% +v3 + U%) gives
||u||2 ||v||2 = ufvf + ufv% + u%vg + u%v% + u%v% + u%v% + ugvf + u%v% + u%v%

To easily expand (u1v1 + ugvs 4 usvs)®, we use the fact that (a + b+ ¢)® = a2 + b2 + ¢ + 2ab + 2ac + 2bc.
The result is

(u-v)2 =uvl + ulvd + uivd 4+ 2uiviugvy + 2uiviuzvs + 2usUausvs
Therefore |[ul|*||v]|* — (u-v)* may be written as
(uiv3 — 2urviugvs + udv?) + (uivi — 2urviugvs +udvl) + (udv3 — 2usvausvs + u3v3) (3)
The expressions in parentheses can be factored! When we do so, (3) becomes
2 2 2
(u1v2 — upv1)” + (urvs — ugv1)” + (ugvs — usv2)

Now the area of the parallelogram may be written as

A= \/(ulvg — u2v1)2 + (uyvs — u3v1)2 + (ugvs — U3U2)2

This is really the norm of some vector with components =+ (ujvy — ugv1), + (u1v3 — uzvy) and + (ugvs — uzva).
A convenient choice, (because, as you will soon find out, it gives a vector that is perpendicular to u and v),
is

(Ug’Ug — U3’U2) i— (ul’Ug — U3’Ul)j + (Ul'UQ — u2U1) k.
We call it the cross product of u =< w71, us,u3 > and v =< v, v9,v3 >, and denote it by u x v. We have
therefore shown that the area of the parallelogram is ||u x v||. A formal definition of u x v is the following:

Definition 1 The cross product of two given vectors u =< uy,ug,uz > and v =< vy, vs,v3 > is denoted by
u x v and is defined by

u X v = (ugu3 — uzv2)i— (u1v3 — uzvy) j + (uve — ugv1) k

We also refer to u x v as the vector product of u and v, because, unlike u - v, it is a vector.
An easy way of remembering u X v is to view it as the "determinant"

i j k
Uuq Us U3
V1 V2 U3
Examples:
1.
(a)ixj=k (b)jxk=i (c)kxi=j (d)jxi=-k (e) kxj=-i

f)ixk=—j (g)ixi=0 (h)jxj=0 i) kxk=0

2. fu=(3,1,-2)=3i+j—k and v=(-1,0,4) = —i+ 4k then
uxv=(4-0)i—-(12-2)j+(0+1)k=4i-10j+k

Remark 2 The area of the parallelogram OPQR, by formula (1), is ||u|| ||v||sin@. Therefore |ju x v|| =
[lul] ||v||sin@, hence ux v is a vector with magnitude ||u|| ||v||sind. Its direction is determined by the
following right-hand rule: Imagine rotating u about the origin, towards v. Now imagine turning an ordinary
screw in the same way. The direction of u X v is given by the direction in which the screw moves. This is
in perfect agreement with results i x j =k, j x i = =k, etc in the above example



A number of useful properties of the cross product are given by the following theorem

Theorem 3 Let u, v and w be given vectors and A be a real number. Then

1. vxu=—uxv . Thus the cross product operation is NOT commutative.
ux (Av)=Auxv.
ux 0=0. Here, 0 is the zero vector < 0,0,0 >.

u X v is orthogonal to u and it is also orthogonal to v.

AT NS

ux (v+w)=uxv+uxw. In other words, the cross product operation is distributive with respect
to addition.

6. Ifu=<uy,us,uz >, v=<uvy,v,03 > and w =< wi, ws, w3 > then

U1 U2 us3
U-VXW= V1 () V3
w1 w2 w3

7. u-(vxw)=(uxv)w

8. Ifu x v =0 then one of the two vectors is a scalar multiple of the other. Conversely, if one of u,v is
a scalar multiple of the other then u x v = 0.

To prove these claims, let u =< u1,ug,uz >, v =< v1,v2,v3 > and w =< wy, wg, w3 >.

1. By definition,

i j k i j k
vu=| v Vg V3 and uxv=| u Us U3
Ui U2 usz U1 V2 U3

The first one expands as (voug — ugv3)i — (vius — u13vs)j + (u2v1 —uyve) k and the second one as
(ugvs — vousz) i— (u13vs — v1us) j+ (u13v2 — ugvy) k. Clearly, the second one is the negative of the first
one, therefore v x u = —u x v.

2. Since \v =< Avy, A\vg, Avg >,
i i Kk
ux (Av) =] u Us us | = (Augusz — Avguz) i — (Augvs — Avjug) j + (Augve — duguy ) k
AvUq AUs U3
The right hand side may be written as A[(ugvs — voug)i— (u1vs — vius) j+ (u1ve — ugv1) k] = Aux v
i j k
ux0=| v Vg vy | =0i+0j+ 0k = 0.

0 0 0



4. To show that u x v is orthogonal to u, it suffices to show that their dot product is zero.

u- (u X V) = Ul (UQ’Ug — ’U2U3) — U2 (’U,ll}g — 1)1U3) —+ us (ulvz — UQ’Ul)

= UU2V3 — UIVU3 — UIU2V3 + UV1U3 + UVau3 — U2V U3 = 0,
That u x v is orthogonal to v is verified in the same way.

5. By definition, v + w =< v; + w1, v + wa, v3 + wg >. Therefore

i j k
ux (v+w)= up Us us
U1 + wq Vg + Wo U3 + w3

Expanding gives
[U,Q (1]3 + ’LU3) — U3 (UQ + 'l,UQ)} i— [Ul (03 + ’wg) — Us (U1 + wl)]j + [U1 (’UQ + U)Q) — U2 (Ul + ’w1)] k.
We may rearrange this as

[(Ugvg — 'UQ’U,g) i— (Ul’l)g — ’1)17.L3)j —+ (’ul’l}g — u2'l)1) k]

+ [(’UQ’UJ?, — IUQU:J,) i— (u1w3 — w1u3)j + (u1w2 — qul) k]
which isequal to uxv+uxw

6. By definition,
v X W = (vawg — vzws)i— (viws — vawy) j + (viwy —wyvg) k

It follows that u- (v x w) = uq (vaws — v3ws) — uz(vViws + vawy) + ug(viwe — wyve). Expanding

Uy U2 us
U1 V2 V3
w1 w2 ws
gives the same result.
7.
u-(VXW) = ujvaws — uv3Ws — UsU W3 + UgU3W1 + UgV1Wa — UzWwq Vs

= (ugvs — uzva) wy — (u1v3 — uzvy) we + (Uvy — ugvy) w3 = (U X V) W

8. Suppose u x v = 0. We may assume that both vectors are nonzero because if one of them is zero then
it is a scalar multiple of the other vector. For example, if u is zero then it is a scalar multiple of v
since we may write

u=0=0v

Let 6 be the angle between the two nonzero vectors. Since ux v = ||ul| ||v||sin# = 0, and the product
[lul| ||v]| is nonzero, it follows that sin® = 0. This in turn implies that § = 0 or 180°, therefore u is
a scalar multiple of v. Conversely, if say u is a scalar multiple of v, then u = Av where X is a real
number, and so

i j k
UXV=AVXV=\| A\ A\Ug Avg | =0i+0j+0k=0

U1 V2 U3



Volume of a parallelepiped

We will run into volumes of parallelepipeds when handling volume integrals. Here is how to construct a
parallelepiped:

1. Start with a parallelogram OPQR, (an example is shown below).

2. Translate a copy of OPQR by a vector u =05




3. Now join the corresponding corners of the two parallelograms to get a solid, called a parallelepiped.

To calculate its volume, simply multiply the area of the parallelogram OPQR by the vertical distance
between the two parallelograms. The vertical distance from the point S to the parallelogram OPQR is

equal to the dot product of OS and a unit vector perpendicular to the parallelogram. (This is a result of a
problem solved under dot products.) Since (OR) X (OP) is a vector perpendicular to the parallelogram,

the vertical distance between them, is
B (OﬁR) x (073) 05 - (o?%) x (079) '55- (JR) x (o?)‘
(o) < (r) | T} (om) < (r) [ | [[(0)« (o7)]

We take the absolute value because the distance must be non-negative. But the area of the parallelogram is

[(o) < (7)

, therefore the volume of the parallelepiped is

o ) G,
-y )

In general, let u = OP, v=0OR and w = OS be vectors that are not in the same plane.




They generate a parallelepiped with volume |u - v x w|. Using a property we derived above, it follows that
if u =< uy,ug,ug >, v =< vy1,v9,v3 > and w =< wi,ws, w3 > then the volume of the parallelepiped

determined by u, v, and w is the absolute value of

Ui U2
U1 V2
w1 w2

Exercise 4
1. Compute the cross product u x v given that

(a)u=<20,-1>and v=<-1,0,2>.

u=<a,2,—1> and v=< —a,0,—-3 > .

u3
U3

w3

u=<44,-1>andv=<-1,1,-3>.

u=<a,a,1> andv=<a,a,a>.

2. Use the cross product of u =31 — 2j + k and v = 2i — j — 4k to calculate the angle between u and v.

3. Calculate the area of the parallelogram determined by the two vectors < 2,—1,4 > and < 3,3,5 >.

4. Calculate the area of the triangle with vertices at (1,1,4), (2,5,—3) and (—1,2,—4).

5. Calculate the volume of the parallelepiped generated by the vectors < 4,5,0 >, < 3,7,0 > and <
1,2,5 >.

6. True or False? Ifuxv=u-v=0 thenu=0 orv=_0. If true, prove it. If false, give a counterez-
ample.

7. Use appropriate properties of determinants to show that [u-v x w| =|v-w xu| = |w-u X V|



