Stokes’s Theorem

We earlier pointed out that if we introduce the vector field F(z,y, z) = M (z,y)i+ N(z,y)j+ 0k, then Green’s
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theorem /M(m, y)dx + N(z,y)dy = // (a&v — aay) dA in a plane may be stated in vector form as
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Stokes theorem generalizes this form to a vector field F(x,y, 2) = Fi(x,y, 2)i+ Fa(z,y, 2)j + F3(z,y, 2)k and
a suitable surface S in three dimensional space. Like Green’s theorem, it relates some integral over S to
some line integral over the positively oriented curve C' that forms the boundary of S. In Green’s theorem,
the boundary OR of R was declared positively oriented, (as the parameter defining it increases), one trace
the curve in such a way that the interior of R is to one’s left. In Stokes theorem, we have to spell out what
it means for the boundary C of a given orientable surface S to be positively oriented. To this end, imagine
pointing the thumb of your right hand towards a normal to S. If you curl your fingers, they will point in
the positive direction of the boundary of S.
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The direction of a positively oriented boundary C'.
Theorem 1 Let S be an orientable surface with unit normaln (z,y, z) at (x,y, z). Assume that its boundary

0S5 is a simple closed positively oriented curve. Let F(x,y,z) = Fi(x,y,2)i + Fa(z,y,2)j + F5(x,y, 2)k be
a vector field whose components Fy(x,y,z), Fa(x,y, 2), F3(x,y,z) have continuous partial derivatives on an

open set containing S. Then
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Proof. Assume that S is the graph of some function g(x,y) defined on a set R in the x - y plane. Thus



S = {(‘r’y7g(x’y) : (ax,y) € R}
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In particular, the boundary of S is the image of the curve C bounding R. We choose the unit normal at
(z,y,9(x,y)) that has a positive k - component and it is
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where the partial derivatives are evaluated at (z,y). From the definition of V x F, it follows that
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Using formula (?77), on page 7?7 we obtain
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Let the boundary C of R be the set {(x(t),y(t)):a <t <b}. Then IS, the boundary of S, is the set
{(z(t),y(t), g(x(t),y(t))) : a <t < b}. By Definition 7?7 on page 77,

/ Fdl — / Fi(z,y, 2)dz + Fy(z,y, 2)dy + Fs(x, y, 2)dz
oS o8

= /(Fl(x(t%y(t),Z(t))x'(t)+Fz(w(t),y(t)7Z(t))y’(t)+Fg(x(t)yy(t)%(t))Z’(t))dt

Since z(t) = g(x(t),y(t)), the chain rule gives
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with the partial derivatives evaluated at (x(t),y(t)). This implies that

Fy(x(t), y(t), 2(t)) 2" (t) = Fs(x(t), y(t), g(x(t), y(t)))%w/(t) + Fy(x(t),y(t), g(x(t), y(t)))%zy’(t)-



To save space we write (x(t),y(t), g(x(t),y(t)) as (z,y,9(x,y)). Therefore

R 0 0
,/astl = / ([Fl(xvyvg(xuy)) + FB(m7yvg(xvy))8.Z:| ml(t) + {F2($7y79($»y) + F3(m7yag(mvy))azj| y/(t)) dt.
Now consider the functions u(z,y) and v(x,y) defined on R by
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The definition of a line integral with respect to a variable implies that
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Green’s theorem may be applied to the right hand side of (2) to give
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We use the chain rule to evaluate the partial derivatives in (3):
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Now subtract to get
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The right hand side of (4) is the integrand in (1). Therefore
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Example 2 Let S be the paraboloid z = h(z,y) = 2% +y*, -3 <2 <3, -3 <y < 3 and F be the vector
field F(x,y, z) = 2yi + 3zj + 2°k.

Clearly, 0S is the circle {(3cost,3sint,9) : 0 <t < 2w} and
N 27
/ Fdl = / 2yda + 3xdy + 2*dz = / (—18sin? t 4 27 cos® t)dt
as as 0
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= / [—9 (1 — cos2t) + 27 (1 + cos 2t)] dt = 97
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It turns out that VXF =k. A normalto S is < —hg, —hy,1 >=< =2z, —3y,1 >. Its norm is /4% +4y%> + 1 =

1
Vdz + 1, therefore a unit normal to S is n = —— < —2x, -3y, 1 >. It follows that
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where R is the disc{(z,y) : =3 <x <3 and —3 <y < 3}. Since,/h%—i—h%—!— =422 + 42 +1 =4z + 1,

the integral simplifies to
// x F)-ndS = // dA // 1dA = 9.
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This verifies Stokes’s theorem.



