
Stokes’s Theorem

We earlier pointed out that if we introduce the vector field F(x, y, z) =M(x, y)i+N(x, y)j+0k, then Green’s

theorem
∫
C

M(x, y)dx+N(x, y)dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA in a plane may be stated in vector form as

∫
∂R

F·
→
dl =

∫∫
R

(∇× F) · kdA.

Stokes theorem generalizes this form to a vector field F(x, y, z) = F1(x, y, z)i+F2(x, y, z)j+F3(x, y, z)k and
a suitable surface S in three dimensional space. Like Green’s theorem, it relates some integral over S to
some line integral over the positively oriented curve C that forms the boundary of S. In Green’s theorem,
the boundary ∂R of R was declared positively oriented, (as the parameter defining it increases), one trace
the curve in such a way that the interior of R is to one’s left. In Stokes theorem, we have to spell out what
it means for the boundary C of a given orientable surface S to be positively oriented. To this end, imagine
pointing the thumb of your right hand towards a normal to S. If you curl your fingers, they will point in
the positive direction of the boundary of S.

The direction of a positively oriented boundary C.

Theorem 1 Let S be an orientable surface with unit normal n (x, y, z) at (x, y, z). Assume that its boundary
∂S is a simple closed positively oriented curve. Let F(x, y, z) = F1(x, y, z)i + F2(x, y, z)j + F3(x, y, z)k be
a vector field whose components F1(x, y, z), F2(x, y, z), F3(x, y, z) have continuous partial derivatives on an
open set containing S. Then ∫

∂S

F·
→
dl =

∫∫
S

(∇× F) · ndS.

Proof. Assume that S is the graph of some function g(x, y) defined on a set R in the x - y plane. Thus
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S = {(x, y, g(x, y) : (x, y) ∈ R}.

In particular, the boundary of S is the image of the curve C bounding R. We choose the unit normal at
(x, y, g(x, y)) that has a positive k - component and it is

n =
− ∂g
∂x i−

∂g
∂y j+ k√(

∂g
∂x

)2
+
(
∂g
∂y

)2
+ 1

,

where the partial derivatives are evaluated at (x, y). From the definition of ∇× F, it follows that

(∇× F) · n = 1√(
∂g
∂x

)2
+
(
∂g
∂y

)2
+ 1

[
−
(
∂F3
∂y
− ∂F2

∂z

)
∂g

∂x
+

(
∂F3
∂x
− ∂F1

∂z

)
∂g

∂y
+

(
∂F2
∂x
− ∂F1

∂y

)]

Using formula (??), on page ?? we obtain∫∫
S

(∇× F) · ndS =
∫∫
R

[(
∂F2
∂z
− ∂F3

∂y

)
∂g

∂x
+

(
∂F3
∂x
− ∂F1

∂z

)
∂g

∂y
+

(
∂F2
∂x
− ∂F1

∂y

)]
dA (1)

Let the boundary C of R be the set {(x(t), y(t)) : a ≤ t ≤ b}. Then ∂S, the boundary of S, is the set
{(x(t), y(t), g(x(t), y(t))) : a ≤ t ≤ b}. By Definition ?? on page ??,∫

∂S

F·
→
dl =

∫
∂S

F1(x, y, z)dx+ F2(x, y, z)dy + F3(x, y, z)dz

=

∫ b

a

(F1(x(t), y(t), z(t))x
′(t) + F2(x(t), y(t), z(t))y

′(t) + F3(x(t), y(t), z(t))z
′(t)) dt

Since z(t) = g(x(t), y(t)), the chain rule gives

z′(t) =
∂g

∂x
x′(t) +

∂g

∂y
y′(t)

with the partial derivatives evaluated at (x(t), y(t)). This implies that

F3(x(t), y(t), z(t))z
′(t) = F3(x(t), y(t), g(x(t), y(t)))

∂g

∂x
x′(t) + F3(x(t), y(t), g(x(t), y(t)))

∂g

∂y
y′(t).
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To save space we write (x(t), y(t), g(x(t), y(t)) as (x, y, g(x, y)). Therefore∫
∂S

F·
→
dl =

∫ b

a

([
F1(x, y, g(x, y)) + F3(x, y, g(x, y))

∂g

∂x

]
x′(t) +

[
F2(x, y, g(x, y) + F3(x, y, g(x, y))

∂g

∂y

]
y′(t)

)
dt.

Now consider the functions u(x, y) and v(x, y) defined on R by

u(x, y) = F1(x, y, g(x, y)) + F3(x, y, g(x, y))
∂g

∂x
, and

v(x, y) = F2(x, y, g(x, y) + F3(x, y, g(x, y))
∂g

∂y

The definition of a line integral with respect to a variable implies that∫ b

a

[
F1(x(t), y(t), g(x(t), y(t))) + F3(x(t), y(t), g(x(t), y(t)))

∂g

∂x

]
x′(t) =

∫
C

u(x, y)dx

and ∫ b

a

[
F2(x(t), y(t), g(x(t), y(t))) + F3(x(t), y(t), g(x(t), y(t)))

∂g

∂y

]
y′(t) =

∫
C

v(x, y)dy

Therefore ∫
∂S

F·
→
dl =

∫
C

u(x, y)dx+ v(x, y)dy (2)

Green’s theorem may be applied to the right hand side of (2) to give∫
∂S

F·
→
dl =

∫∫
R

(
∂v

∂x
− ∂u

∂y

)
dA (3)

We use the chain rule to evaluate the partial derivatives in (3):

∂v

∂x
=

∂

∂x

(
F2(x, y, g(x, y)) + F3(x, y, g(x, y))

∂g

∂y

)

=
∂F2
∂x

+
∂F2
∂z

∂g

∂x
+

(
∂F3
∂x

+
∂F3
∂z

∂g

∂x

)
∂g

∂y
+ F3

∂2g

∂x∂y

And

∂u

∂y
=

∂

∂y

(
F1(x, y, g(x, y)) + F3(x, y, g(x, y))

∂g

∂x

)

=
∂F1
∂y

+
∂F1
∂z

∂g

∂y
+

(
∂F3
∂y

+
∂F3
∂z

∂g

∂y

)
∂g

∂x
+ F3

∂2g

∂y∂x

Now subtract to get

∂v

∂x
− ∂u

∂y
=

(
∂F2
∂z
− ∂F3

∂y

)
∂g

∂x
+

(
∂F3
∂x
− ∂F1

∂z

)
∂g

∂y
+

(
∂F2
∂x
− ∂F1

∂y

)
(4)

The right hand side of (4) is the integrand in (1). Therefore∫
∂S

F·
→
dl =

∫∫
S

(∇× F) · ndS.
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Example 2 Let S be the paraboloid z = h(x, y) = x2 + y2, −3 ≤ x ≤ 3, −3 ≤ y ≤ 3 and F be the vector
field F(x, y, z) = 2yi+ 3xj+ z2k.
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Clearly, ∂S is the circle {(3 cos t, 3 sin t, 9) : 0 ≤ t ≤ 2π} and∫
∂S

F·
→
dl =

∫
∂S

2ydx+ 3xdy + z2dz =

∫ 2π

0

(−18 sin2 t+ 27 cos2 t)dt

=

∫ 2π

0

[−9 (1− cos 2t) + 27 (1 + cos 2t)] dt = 9π

It turns out that∇×F = k. A normal to S is < −hx,−hy, 1 >=< −2x,−3y, 1 >. Its norm is
√
4x2 + 4y2 + 1 =

√
4z + 1, therefore a unit normal to S is n =

1√
4z + 1

< −2x,−3y, 1 >. It follows that

∫∫
S

(∇× F) · ndS =
∫∫
S

1√
4z + 1

dS =

∫∫
R

√
h2x + h

2
y + 1

√
4z + 1

dA

where R is the disc{(x, y) : −3 ≤ x ≤ 3 and − 3 ≤ y ≤ 3}. Since
√
h2x + h

2
y + 1 =

√
4x2 + 4y2 + 1 =

√
4z + 1,

the integral simplifies to ∫∫
S

(∇× F) · ndS =
∫∫
R

√
4z + 1√
4z + 1

dA =

∫∫
R

1dA = 9π.

This verifies Stokes’s theorem.

4


