

Surface Integral of a Vector Field

To get an intuitive idea of the surface integral of a vector field, imagine a filter through which a certain fluid flows to be purified. The impurities are removed as the fluid crosses a surface S in the filter. Assume that the fluid velocity depends on position in space. Thus there is a function $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$ that gives the velocity of the fluid at each point (x, y, z) . The volume of fluid that crosses S in unit time is called the flux of the vector field across S . It, (i.e. the flux), is zero if the fluid moves parallel to S . This suggests that at each point (x, y, z) of S we should consider the component of \mathbf{F} that is normal to S at (x, y, z) . That component is $\mathbf{F} \cdot \mathbf{n}$ where \mathbf{n} is a unit normal to S at (x, y, z) . Partition the surface into smaller elements S_{ij} with area ΔS_{ij} . An estimate of the fluid that crosses S_{ij} in unit time is $(\mathbf{F} \cdot \mathbf{n}) \Delta S_{ij}$. The sum

$$\sum_{i=1}^n \sum_{j=1}^m (\mathbf{F} \cdot \mathbf{n}) \Delta S_{ij} \quad (1)$$

should give an estimate of the flux of \mathbf{F} across S and the limit of such sums as the areas ΔS_{ij} shrink to zero should be the exact value of the flux. That limit is denoted by

$$\iint_S \mathbf{F} \cdot \mathbf{n} dS$$

and it is called the **flux integral of F across S** . In forming the sum (1), we assumed that a normal \mathbf{n} is defined at every point of S . If it can be defined "continuously on S " then S is called an orientable surface. More precisely, a surface S is called an **orientable surface** if it is possible to assign a normal $\mathbf{n}(x, y, z)$ to each point (x, y, z) of S in such a way that when (x_1, y_1, z_1) is close to (x_2, y_2, z_2) then the two normals $\mathbf{n}(x_1, y_1, z_1)$ and $\mathbf{n}(x_2, y_2, z_2)$ are almost identical. That is; when $\|(x_1, y_1, z_1) - (x_2, y_2, z_2)\|$ is close to zero then $\|\mathbf{n}(x_1, y_1, z_1) - \mathbf{n}(x_2, y_2, z_2)\|$ is also close to zero.

Definition 1 Let S be an orientable surface with normal $\mathbf{n}(x, y, z)$ at a point (x, y, z) of S . Let $\mathbf{F}(x, y, z)$ be a vector field defined on some open set containing S . Then the surface integral of \mathbf{F} over S , (or the flux of \mathbf{F} across S), is the number

$$\iint_S \mathbf{F} \cdot \mathbf{n} dS.$$

Example 2 Let $\mathbf{F}(x, y, z) = xy\mathbf{i} + 3yz\mathbf{j} - xyz\mathbf{k}$ and S be the part of the plane $3x + 2y - 3z = 2$ with $-1 \leq x \leq 2$ and $0 \leq y \leq 1$. A unit normal to S at a point (x, y, z) is $\mathbf{n} = \frac{1}{\sqrt{22}} \langle 3, 2, -3 \rangle$, therefore $\mathbf{F} \cdot \mathbf{n} = \frac{1}{\sqrt{22}} (3xy + 6yz + 3xyz)$. It follows that

$$\iint_S \mathbf{F} \cdot \mathbf{n} dS = \frac{1}{\sqrt{22}} \iint_S (3xy + 6yz + 3xyz) dS.$$

S is the surface $\{(x, y, \frac{3x+2y-2}{3}) : -1 \leq x \leq 2 \text{ and } 0 \leq y \leq 1\}$. Let $R = \{(x, y, z) : -1 \leq x \leq 2 \text{ and } 0 \leq y \leq 1\}$. By formula (??),

$$\begin{aligned} \iint_S (3xy + 6yz + 3xyz) dS &= \frac{1}{\sqrt{22}} \iint_R \left(3xy + (6y + 3xy) \left(\frac{3x + 2y - 2}{3} \right) \right) \left(\sqrt{1 + \frac{4}{9} + 1} \right) dA \\ &= \frac{1}{3} \int_{-1}^4 \int_0^5 (-4y + 4y^2 + 7xy + 3x^2y + 2xy^2) dy dx \\ &= \frac{1}{3} \int_{-1}^4 \left(-\frac{2}{3} + \frac{25x}{6} + \frac{3x^2}{2} \right) dx = \frac{1}{3} \left[-\frac{2x}{3} + \frac{25x^2}{12} + \frac{x^3}{2} \right]_{-1}^4 = \frac{35}{12} \end{aligned}$$

Example 3 Let $\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} - z^2\mathbf{k}$ and S be the hemisphere $\{(x, y, z) : x^2 + y^2 + z^2 = 4 \text{ and } z \geq 0\}$. Thus S is the graph of $z(x, y) = \sqrt{4 - x^2 - y^2}$. We choose the normal to the hemisphere $(x, y, z(x, y))$ that points outside the hemisphere. It must have a positive z - component, therefore we should take

$$-\frac{\partial z}{\partial x}(x, y)\mathbf{i} - \frac{\partial z}{\partial y}(x, y)\mathbf{j} + \mathbf{k} = \frac{x\mathbf{i}}{\sqrt{4 - x^2 - y^2}} + \frac{y\mathbf{j}}{\sqrt{4 - x^2 - y^2}} + \mathbf{k} = \frac{x\mathbf{i}}{z} + \frac{y\mathbf{j}}{z} + \mathbf{k},$$

(see problem ?? on page ??). Its norm is

$$\sqrt{\frac{x^2}{z^2} + \frac{y^2}{z^2} + 1} = \sqrt{\frac{x^2 + y^2 + z^2}{z^2}} = \sqrt{\frac{4}{z^2}} = \frac{2}{z}$$

Therefore the corresponding unit normal is

$$\mathbf{n} = \frac{z}{2} \left(\frac{x\mathbf{i}}{z} + \frac{y\mathbf{j}}{z} + \mathbf{k} \right) = \frac{x\mathbf{i}}{2} + \frac{y\mathbf{j}}{2} + \frac{z\mathbf{k}}{2}$$

It follows that

$$\mathbf{F} \cdot \mathbf{n} = \frac{z}{2} (xy + xy - z^2) = \frac{z}{2} (2xy - z^2) = \frac{z}{2} (x^2 + y^2 + 2xy - 4) = \frac{z}{2} ((x + y)^2 - 4)$$

Denote the circle $\{(x, y) : x^2 + y^2 = 4\}$ by C and the region it encloses by R . Then

$$\begin{aligned} \iint_S \mathbf{F} \cdot \mathbf{n} dS &= \iint_S \frac{z}{2} ((x + y)^2 - 4) dS = \iint_R \frac{z}{2} ((x + y)^2 - 4) \left(\sqrt{\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 + 1} \right) dA \\ &= \iint_R ((x + y)^2 - 4) dA \end{aligned}$$

This is easily evaluated when we change to polar coordinates:

$$\iint_R ((x + y)^2 - 4) dA = \int_0^{2\pi} \int_0^2 ((r \cos \theta + r \sin \theta)^2 - 4) r dr d\theta = \int_0^{2\pi} \int_0^2 (r^3(1 + \sin 2\theta) - 4r) dr d\theta = -8\pi$$

Exercise 4 Figure (i) is the solid enclosed by the paraboloid $\{(x, y, z) : z = 16 - x^2 - y^2 \text{ and } z \geq 0\}$ and the xy plane; Figure (ii) is the solid enclosed by the hemisphere $\{(x, y, z) : x^2 + y^2 + z^2 = 4 \text{ and } z \geq 0\}$ and the xy plane.

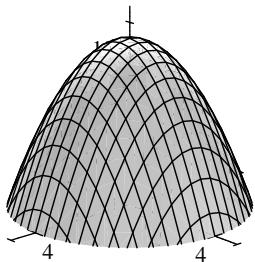


Figure (i)

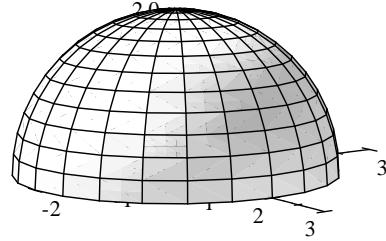


Figure (ii)

1. Evaluate the flux of $\mathbf{F}(x, y, z) = 3x\mathbf{i} - 2y\mathbf{j} + 4z\mathbf{k}$ across the surface S that encloses the solid in Figure (i).
2. Evaluate the flux of $\mathbf{F}(x, y, z) = 3z\mathbf{i} - 2z\mathbf{j} + (x - y + 3)\mathbf{k}$ across the surface S that encloses the solid in Figure (ii).

The Divergence Theorem

In Remark ?? on page ??, we pointed out that Green's theorem for a function defined in a plane may be given in the form

$$\int_{\partial R} \mathbf{F} \cdot \mathbf{n} dl = \iint_R \nabla \cdot \mathbf{F} dA$$

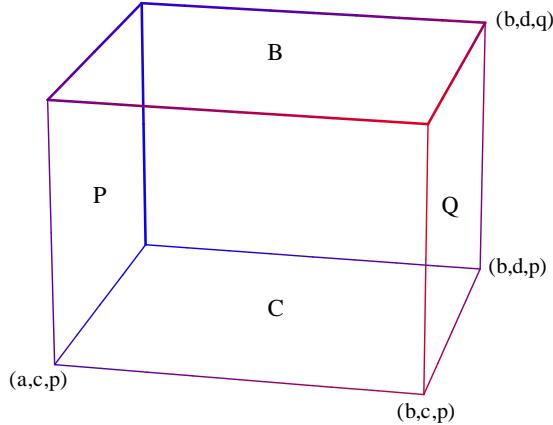
The divergence theorem is essentially an extension of this form to a function of three variables. It may be stated as follows:

Theorem 5 *Let V be a subset of \mathbb{R}^3 that is bounded by a closed orientable surface S . Let $\mathbf{n}(x, y, z)$ be the outward normal to S at $(x, y, z) \in S$. Let $\mathbf{F} = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$ be a given vector field whose components F_1 , F_2 , and F_3 have continuous partial derivatives in V . Then*

$$\iint_S \mathbf{F} \cdot \mathbf{n} dS = \iiint_V \nabla \cdot \mathbf{F} dV$$

Proof. Like Green's theorem, a proof of this statement for a general subset V of \mathbb{R}^3 requires some heavy duty tools we have not developed. We prove the special case when V is a rectangular box whose sides are parallel to the coordinate planes. Thus

$$V = \{(x, y, z) : a \leq x \leq b, c \leq y \leq d \text{ and } p \leq z \leq q \text{ with } a, b, c, d, p, q \text{ constants}\}$$



Consider the top and bottom faces B and C of the box. The outward normal to B is \mathbf{k} whereas the outward normal to C is $-\mathbf{k}$. Therefore

$$\begin{aligned} \iint_C \mathbf{F} \cdot \mathbf{n} dA + \iint_B \mathbf{F} \cdot \mathbf{n} dA &= - \iint_C F_3 dA + \iint_B F_3 dA \\ &= - \int_a^b \int_c^d F_3(x, y, p) dy dx + \int_a^b \int_c^d F_3(x, y, q) dy dx \\ &= \int_a^b \int_c^d (F_3(x, y, q) - F_3(x, y, p)) dy dx \end{aligned}$$

Now observe that $F_3(x, y, q) - F_3(x, y, p)$ may be written as $\int_p^q \frac{\partial F_3}{\partial z} dz$. Therefore

$$\iint_C \mathbf{F} \cdot \mathbf{n} dA + \iint_B \mathbf{F} \cdot \mathbf{n} dA = \int_a^b \int_c^d \int_p^q \frac{\partial F_3}{\partial z} dz dy dx = \iiint_V \frac{\partial F_3}{\partial z} dV$$

Turning to the faces P and Q , similar computations give

$$\begin{aligned} \iint_P \mathbf{F} \cdot \mathbf{n} dA + \iint_Q \mathbf{F} \cdot \mathbf{n} dA &= - \int_a^b \int_p^q F_2(x, c, z) dz dx + \int_a^b \int_p^q F_2(x, d, z) dz dx \\ &= \int_a^b \int_p^q \int_c^d \frac{\partial F_2}{\partial y} dy dz dx = \iiint_V \frac{\partial F_2}{\partial y} dV \end{aligned}$$

Denote the remaining pair of opposite faces by H and K . Then

$$\iint_H \mathbf{F} \cdot \mathbf{n} dA + \iint_K \mathbf{F} \cdot \mathbf{n} dA = \int_p^q \int_c^d \int_a^b \frac{\partial F_1}{\partial x} dx dy dz = \iiint_V \frac{\partial F_1}{\partial x} dV$$

Since $\iint_S \mathbf{F} \cdot \mathbf{n} dS = \iint_C \mathbf{F} \cdot \mathbf{n} dA + \iint_B \mathbf{F} \cdot \mathbf{n} dA + \iint_P \mathbf{F} \cdot \mathbf{n} dA + \iint_Q \mathbf{F} \cdot \mathbf{n} dA + \iint_H \mathbf{F} \cdot \mathbf{n} dA + \iint_K \mathbf{F} \cdot \mathbf{n} dA$, it follows that

$$\begin{aligned} \iint_S \mathbf{F} \cdot \mathbf{n} dS &= \iiint_V \frac{\partial F_3}{\partial z} dV + \iiint_V \frac{\partial F_2}{\partial y} dV + \iiint_V \frac{\partial F_1}{\partial x} dV \\ &= \iiint_V \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \right) dV = \iiint_V \nabla \cdot \mathbf{F} dV \end{aligned}$$

A simple generalization of this is the case in which V is a union $V_1 \cup \dots \cup V_m$ of a finite number of such boxes which intersect, if at all they do, only in their common parallel faces. Let their surfaces be S_1, \dots, S_m . Since

$$\iint_S \mathbf{F} \cdot \mathbf{n} dS = \iint_{S_1} \mathbf{F} \cdot \mathbf{n} dS + \dots + \iint_{S_m} \mathbf{F} \cdot \mathbf{n} dS$$

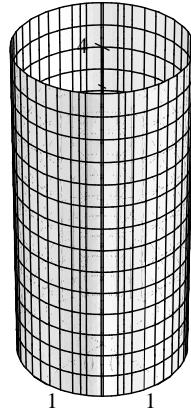
and

$$\iiint_V \nabla \cdot \mathbf{F} dV = \iiint_{V_1} \nabla \cdot \mathbf{F} dV + \dots + \iiint_{V_m} \nabla \cdot \mathbf{F} dV$$

it follows that the theorem also holds for such sets V . To prove the theorem in its general form, one has to show that a subset V of \mathbb{R}^3 with an orientable surface is a limit of such boxes and go on to deduce that the theorem also applies to it. ■

Exercise 6

1. Let S be the cylinder $x^2 + y^2 = 1$, $0 \leq z \leq 4$.

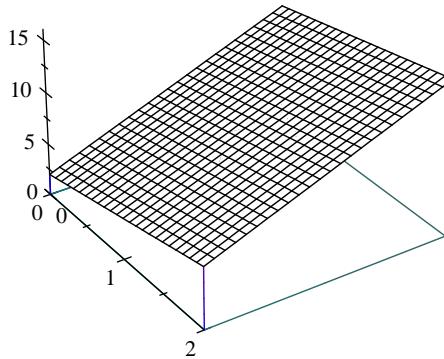


You are required to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} dS$ where $\mathbf{F}(x, y, z) = yz\mathbf{i} + 4x^2\mathbf{j} + z^2\mathbf{k}$. Let V be the solid enclosed by the cylinder.

(a) Show that $\iiint_V \nabla \cdot \mathbf{F} dV = 2 \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_0^4 z dz dy dx$.

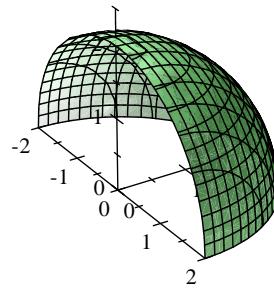
(b) Use the divergence theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} dS$.

2. Let $\mathbf{F}(x, y, z) = x\mathbf{i} + yz\mathbf{j} - z(x+y)\mathbf{k}$ and S be the surface enclosing the solid between the plane $z = 2x + 3y + 2$ and the rectangle $\{(x, y, 0) : 0 \leq x \leq 2 \text{ and } 0 \leq y \leq 3\}$. Use the divergence theorem to evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} dS$



3. The figure below shows the part of the hemisphere above the x - y plane and to the right of the x - z plane. Let V be the part of this solid that is above the $z = 1$ plane and S be the surface that encloses

V.



Use the divergence theorem to evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} dS$ where $\mathbf{F}(x, y, z) = y\mathbf{i} + 4x\mathbf{j} + xyz\mathbf{k}$.

4. The figure below shows the region V enclosed by the plane $z = x + y + 2$ and the cylinder $x^2 + y^2 = 1$, $0 \leq z \leq 4$. Let S be the surface enclosing V . Use the divergence theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} dS$ where $\mathbf{F}(x, y, z) = x\mathbf{i} + 4y\mathbf{j} + z\mathbf{k}$.

