
Surface Integral of a Vector Field

To get an intuitive idea of the surface integral of a vector field, imagine a filter through which a certain fluid
flows to be purified. The impurities are removed as the fluid crosses a surface S in the filter. Assume that the
fluid velocity depends on position in space. Thus there is a function F(x, y, z) = F1 (x, y, z) i+F2 (x, y, z) j+
F3 (x, y, z)k that gives the velocity of the fluid at each point (x, y, z). The volume of fluid that crosses S in
unit time is called the flux of the vector field across S. It, (i.e. the flux), is zero if the fluid moves parallel to
S. This suggests that at each point (x, y, z) of S we should consider the component of F that is normal to
S at (x, y, z). That component is F · n where n is a unit normal to S at (x, y, z). Partition the surface into
smaller elements Sij with area 4Sij . An estimate of the fluid that crosses Sij in unit time is (F · n)4Sij .
The sum

n∑
i=1

m∑
j=1

(F · n)4Sij (1)

should give an estimate of the flux of F across S and the limit of such sums as the areas 4Sij shrink to zero
should be the exact value of the flux. That limit is denoted by∫∫

S

F · ndS

and it is called the flux integral of F across S. In forming the sum (1), we assumed that a normal n is
defined at every point of S. If it can be defined "continuously on S" then S is called an orientable surface.
More precisely, a surface S is called an orientable surface if it is possible to assign a normal n(x, y, z)
to each point (x, y, z) of S in such a way that when (x1, y1, z1) is close to (x2, y2, z2) then the two normals
n(x1, y1, z1) and n(x2, y2, z2) are almost identical. That is; when ||(x1, y1, z1)− (x2, y2, z2)|| is close to zero
then ||n(x1, y1, z1)− n(x2, y2, z2)|| is also close to zero.

Definition 1 Let S be an orientable surface with normal n(x, y, z) at a point (x, y, z) of S. Let F(x, y, z)
be a vector field defined on some open set containing S. Then the surface integral of F over S, (or the flux
of F across S), is the number ∫∫

S

F · ndS.

Example 2 Let F(x, y, z) = xyi + 3yzj − xyzk and S be the part of the plane 3x + 2y − 3z = 2 with
−1 ≤ x ≤ 2 and 0 ≤ y ≤ 1. A unit normal to S at a point(x, y, z) is n = 1√

22
< 3, 2,−3 >, therefore

F · n = 1√
22
(3xy + 6yz + 3xyz). It follows that

∫∫
S

F · ndS = 1√
22

∫∫
S

(3xy + 6yz + 3xyz) dS.

S is the surface
{(
x, y, 3x+2y−23

)
: −1 ≤ x ≤ 2 and 0 ≤ y ≤ 1

}
. Let R = {(x, y, z) : −1 ≤ x ≤ 2 and 0 ≤ y ≤ 1}.

By formula (??),∫∫
S

(3xy + 6yz + 3xyz) dS = 1√
22

∫∫
R

(
3xy + (6y + 3xy)

(
3x+ 2y − 2

3

))(√
1 +

4

9
+ 1

)
dA

=
1

3

∫ 4

−1

∫ 5

0

(
−4y + 4y2 + 7xy + 3x2y + 2xy2

)
dydx

=
1

3

∫ 4

−1

(
−2
3
+
25x

6
+
3x2

2

)
dx =

1

3

[
−2x
3
+
25x2

12
+
x3

2

]2
−1
=
35

12

1



Example 3 Let F(x, y, z) = yzi+xzj−z2k and S be the hemisphere
{
(x, y, z) : x2 + y2 + z2 = 4 and z ≥ 0

}
.

Thus S is the graph of z(x, y) =
√
4− x2 − y2. We choose the normal to the hemisphere (x, y, z(x, y)) that

points outside the hemisphere. It must have a positive z - component, therefore we should take

−∂z
∂x
(x, y)i− ∂z

∂y
(x, y)j+ k =

xi√
4− x2 − y2

+
yj√

4− x2 − y2
+ k =

xi

z
+
yj

z
+ k,

(see problem ?? on page ??). Its norm is√
x2

z2
+
y2

z2
+ 1 =

√
x2 + y2 + z2

z2
=

√
4

z2
=
2

z

Therefore the corresponding unit normal is

n =
z

2

(
xi

z
+
yj

z
+ k

)
=
xi

2
+
yj

2
+
zk

2

It follows that

F · n = z

2

(
xy + xy − z2

)
=
z

2

(
2xy − z2

)
=
z

2

(
x2 + y2 + 2xy − 4

)
=
z

2

(
(x+ y)

2 − 4
)

Denote the circle
{
(x, y) : x2 + y2 = 4

}
by C and the region it encloses by R. Then

∫∫
S

F · ndS =

∫∫
S

z

2

(
(x+ y)

2 − 4
)
dS =

∫∫
R

z

2

(
(x+ y)

2 − 4
)√(∂z

∂x

)2
+

(
∂z

∂y

)2
+ 1

 dA

=

∫∫
R

(
(x+ y)

2 − 4
)
dA

This is easily evaluated when we change to polar coordinates:∫∫
R

(
(x+ y)

2 − 4
)
dA =

∫ 2π

0

∫ 2

0

(
(r cos θ + r sin θ)

2 − 4
)
rdrdθ =

∫ 2π

0

∫ 2

0

(
r3(1 + sin 2θ)− 4r

)
drdθ = −8π

Exercise 4 Figure (i) is the solid enclosed by the paraboloid
{
(x, y, z) : z = 16− x2 − y2 and z ≥ 0

}
and

the xy plane; Figure (ii) is the solid enclosed by the hemisphere
{
(x, y, z) : x2 + y2 + z2 = 4 and z ≥ 0

}
and

the xy plane.
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1. Evaluate the flux of F(x, y, z) = 3xi− 2yj+ 4zk across the surface S that encloses the solid in Figure
(i).

2. Evaluate the flux of F(x, y, z) = 3zi − 2zj + (x− y + 3)k across the surface S that encloses the solid
in Figure (ii).

The Divergence Theorem

In Remark ?? on page ??, we pointed out that Green’s theorem for a function defined in a plane may be
given in the form ∫

∂R

F · ndl =
∫∫
R

∇ · FdA

The divergence theorem is essentially an extension of this form to a function of three variables. It may be
stated as follows:

Theorem 5 Let V be a subset of R3 that is bounded by a closed orientable surface S. Let n(x, y, z) be the
outward normal to S at (x, y, z) ∈ S. Let F = F1(x, y, z)i+ F2(x, y, z)j+F3(x, y, z)k be a given vector field
whose components F1, F2, and F3 have continuous partial derivatives in V . Then∫∫

S

F · ndS =
∫∫∫

V

∇ · FdV

Proof. Like Green’s theorem, a proof of this statement for a general subset V of R3 requires some heavy
duty tools we have not developed. We prove the special case when V is a rectangular box whose sides are
parallel to the coordinate planes. Thus

V = {(x, y, z) : a ≤ x ≤ b, c ≤ y ≤ d and p ≤ z ≤ q with a, b, c, d, p, q constants}

(a,c,p)

(b,d,q)

P

C

B

Q

(b,d,p)

(b,c,p)

Consider the top and bottom faces B and C of the box. The outward normal to B is k whereas the outward
normal to C is −k. Therefore∫∫

C

F · ndA+
∫∫
B

F · ndA = −
∫∫
C

F3dA+

∫∫
B

F3dA

= −
∫ b

a

∫ d

c

F3(x, y, p)dydx+

∫ b

a

∫ d

c

F3(x, y, q)dydx

=

∫ b

a

∫ d

c

(F3(x, y, q)− F3(x, y, p)) dydx
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Now observe that F3(x, y, q)− F3(x, y, p) may be written as
∫ q

p

∂F3
∂z

dz. Therefore

∫∫
C

F · ndA+
∫∫
B

F · ndA =
∫ b

a

∫ d

c

∫ q

p

∂F3
∂z

dzdydx =

∫∫∫
V

∂F3
∂z

dV

Turning to the faces P and Q, similar computations give∫∫
P

F · ndA+
∫∫
Q

F · ndA = −
∫ b

a

∫ q

p

F2(x, c, z)dzdx+

∫ b

a

∫ q

p

F2(x, d, z)dzdx

=

∫ b

a

∫ q

p

∫ d

c

∂F2
∂y

dydzdx =

∫∫∫
V

∂F2
∂y

dV

Denote the remaining pair of opposite faces by H and K. Then∫∫
H

F · ndA+
∫∫
K

F · ndA =
∫ q

p

∫ d

c

∫ b

a

∂F1
∂x

dxdydz =

∫∫∫
V

∂F1
∂x

dV

Since
∫∫
S

F · ndS =
∫∫
C

F · ndA +
∫∫
B

F · ndA +
∫∫
P

F · ndA +
∫∫
Q

F · ndA +
∫∫
H

F · ndA +
∫∫
K

F · ndA, it

follows that ∫∫
S

F · ndS =

∫∫∫
V

∂F3
∂z

dV +

∫∫∫
V

∂F2
∂y

dV +

∫∫∫
V

∂F1
∂x

dV

=

∫∫∫
V

(
∂F1
∂x

+
∂F2
∂y

+
∂F3
∂z

)
dV =

∫∫∫
V

∇ · FdV

A simple generalization of this is the case in which V is a union V1 ∪ · · · ∪ Vm of a finite number of such
boxes which intersect, if at all they do, only in their common parallel faces. Let their surfaces be S1, . . . , Sm.
Since ∫∫

S

F · ndS =
∫∫
S1

F · ndS + · · ·+
∫ ∫
Sm

F · ndS

and ∫∫∫
V

∇ · FdV =
∫∫∫

V1

∇ · FdV + · · ·+
∫∫ ∫

Vm

∇ · FdV

it follows that the theorem also holds for such sets V . To prove the theorem in its general form, one has to
show that a subset V of R3 with an orientable surface is a limit of such boxes and go on to deduce that the
theorem also applies to it.

Exercise 6
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1. Let S be the cylinder x2 + y2 = 1, 0 ≤ z ≤ 4.
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You are required to evaluate
∫∫
S

F · ndS where F(x, y, z) = yzi+4x2j+z2k. Let V be the solid enclosed

by the cylinder.

(a) Show that
∫∫∫

V

∇ · FdV = 2
∫ 1

−1

∫ −√1−x2
−
√
1−x2

∫ 4

0

zdzdydx.

(b) Use the divergence theorem to evaluate
∫∫
S

F · ndS.

2. Let F(x, y, z) = xi + yzj − z (x+ y)k and S be the surface enclosing the solid between the plane
z = 2x+ 3y+ 2 and the rectangle {(x, y, 0) : 0 ≤ x ≤ 2 and 0 ≤ y ≤ 3}. Use the divergence theorem to

evaluate the surface integral
∫∫
S

F · ndS
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3. The figure below shows the part of the hemisphere above the x - y plane and to the right of the x - z
plane. Let V be the part of this solid that is above the z = 1 plane and S be the surface that encloses
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Use the divergence theorem to evaluate the surface integral
∫∫
S

F · ndS where F(x, y, z) = yi + 4xj +

xyzk.

4. The figure below shows the region V enclosed by the plane z = x+ y + 2 and the cylinder x2 + y2 = 1,

0 ≤ z ≤ 4. Let S be the surface enclosing V . Use the divergence theorem to evaluate
∫∫
S

F · ndS where

F(x, y, z) = xi+ 4yj+ zk.
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