
Line Integral of a Vector Field

The line integral of a vector field F(x, y, z) =< F1(x, y, z), F2(x, y, z), F3(x, y, z) > along a curve C defined
by c(t) =< x(t), y(t), z(t) >, a ≤ t ≤ b is calculated the same way we calculated the work done by a variable
force. The first step is to partition C into small elements, by dividing the interval [a, b] into small subintervals
[t0, t1], [t1, t2], . . . , [tn−1, tn] where a = t0 < t1 < t2 < · · · < tn−1 < tn = b. Let 4xi = x(ti+1) − x (ti),
4yi = y(ti+1)− y (ti), 4zi = z(ti+1)− z (ti) and

→
4li = 4xii+4yij+4zik. The next step is to form the

sum
n−1∑
i=0

F (x(ti), y(ti), z(ti))·
→
4li =

n−1∑
i=0

F (x(ti), y(ti), z(ti))·([x(ti+1)− x(ti)] i+ [y(ti+1)− y(ti)] j+ [z(ti+1)− z(ti)]k)

(1)
The right hand side of (1) expands as

n−1∑
i=0

F1 (x(ti), y(ti), z(ti)) [x(ti+1)− x(ti)] +
n−1∑
i=0

F2 (x(ti), y(ti), z(ti)) [y(ti+1)− y(ti)]

+

n−1∑
i=0

F3 (x(ti), y(ti), z(ti)) [z(ti+1)− z(ti)]

The limit of such sums as all the lengths |ti+1 − ti| tend to zero is called the line integral of F (x(ti), y(ti), z(ti))
along C. It is denoted by

∫
C

F(x, y, z) ·
→
dl. Actually we have already run into these limits. The limit of

n−1∑
i=0

F1 (x(ti), y(ti), z(ti)) [x(ti+1)− x(ti)] is the line integral of F1 along C with respect to x, etc. Therefore

∫
C

F(x, y, z) ·
→
dl =

∫
C

F1(x, y, z)dx+ F2(x, y, z)dy + F3(x, y, z)dz

If x(t), y(t), z(t) have continuous derivatives then using the results we derived about line integrals with
respect to variables gives∫

C

F(x, y, z) ·
→
dl =

∫ b

a

(F1(x(t), y(t), z(t))x
′(t) + F2(x(t), y(t), z(t))y

′(t) + F3(x(t), y(t), z(t))z
′(t)) dt.

The following is the formal definition:

Definition 1 Let F(x, y, z) =< F1(x, y, z), F2(x, y, z), F3(x, y, z) > be a given vector field and C be a curve
parametrized by c(t) =< x(t), y(t), z(t) >, a ≤ t ≤ b. The line integral of F along C is denoted by∫
C

F(x, y, z) ·
→
dl and is defined by∫

C

F(x, y, z) ·
→
dl=

∫
C

F1(x, y, z)dx+ F2(x, y, z)dy + F3(x, y, z)dz

Example 2 Let F(x, y, z) =< yz, xz, xy > and C be defined by c(t) =< 4t+1, t2, 2t−3 >, 0 ≤ t ≤ 3. Then
F1(x, y, z) = yz, F2(x, y, z) = xz, F3(x, y, z) = xy, x(t) = 4t + 1, y(y) = t2 and z(t) = 2t − 3. The line
integral of F over C is∫

C

F(x, y, z) ·
→
dl =

∫
C

yzdx+ xzdy + xydz

=

∫ 3

0

[
t2 (2t− 3) + (4t+ 1) (2t− 3) 2t+ t2 (4t+ 1) 2

]
dt

=

∫ 3

0

(
32t3 − 30t2 − 6t

)
dt

=
[
4t4 − 10t3 − 3t2

]3
0
= 27
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Exercise 3 Evaluate the line integral
∫
C

F(x, y, z) ·
→
dl given that

1. F(x, y, z) = 3yi− 4zj− 2xyzk and C is defined by c(t) =< t2, t3, 2t >,0 ≤ t ≤ 1.

2. F(x, y, z) = yi− xj− (z + y)k and C is defined by c(t) =< cos t, sin t, t >,0 ≤ t ≤ π/3.

3. F(x, y, z) = (x+ y) i− xyj− (z + y)k and C is defined by c(t) =< et, 3et, t >,0 ≤ t ≤ π/3.

The next theorem gives us a quick method of evaluating a line integral of a conservative vector field.

Theorem 4 Let F(x, y, z) =< F1(x, y, z), F2(x, y, z), F3(x, y, z) > be a conservative vector field with po-
tential function φ and C be a smooth curve defined by c(t) =< x(t), y(t), z(t) >, a ≤ t ≤ b. Then∫
C

F(x, y, z) ·
→
dl= φ(x(b), y(b), z(b))− φ(x(a), y(a), z(a)).

Proof. By definition,
∫
C

F(x, y, z) ·
→
dl=

∫
C

F1(x, y, z)dx+F2(x, y, z)dy+F3(x, y, z)dz. The potential function

satisfies the three conditions

F1(x, y, z) = φx(x, y, z), F2(x, y, z) = φy(x, y, z), and F3(x, y, z) = φz(x, y, z).

Therefore∫
C

F(x, y, z) ·
→
dl =

∫
C

φx(x, y, z)dx+ φy(x, y, z)dy + φz(x, y, z)dz

=

∫ b

a

[
φx(x(t), y(t), z(t))x

′(t) + φy(x(t), y(t), z(t))y
′(t) + φz(x(t), y(t), z(t))z

′(t)
]
dt

By the chain rule, the real-valued function g(t) = φ ◦ c(t) of one variable t has derivative g′(t) given by

g′(t) =

(
φx(x(t), y(t), z(t)) φy(x(t), y(t), z(t)) φz(x(t), y(t), z(t))

)
x′(t)

y′(t)

z′(t)


On multiplying the two matrices we get the very integrand in the above integral. Therefore∫

C

F(x, y, z) ·
→
dl =

∫ b

a

g′(t)dt = g(b)− g(a) = φ(x(b), y(b), z(b))− φ(x(a), y(a), z(a)).

Two useful results follow from Theorem 4

1. If F(x, y, z) is a conservative vector field and C is a smooth closed curve then
∫
C

F(x, y, z) ·
→
dl= 0. To

see this take a potential φ for F . Say C starts and ends at a. Then∫
C

F(x, y, z) ·
→
dl= φ(x(a), y(a), z(a))− φ(x(a), y(a), z(a)) = 0.

2. If F(x, y, z) is a conservative vector field and C1, C2 are smooth curves that join two points P and Q
then ∫

C1

F(x, y, z) ·
→
dl=

∫
C2

F(x, y, z) ·
→
dl. (2)

To see this, consider the piecewise smooth curve C = C1 − C2. It is closed, therefore

0 =

∫
C1−C2

F(x, y, z) ·
→
dl=

∫
C1

F(x, y, z) ·
→
dl−

∫
C2

F(x, y, z) ·
→
dl

which implies (2).
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The converse of the assertion in (2) is also true under certain conditions, namely:

Theorem 5 Let F(x, y, z) = F1(x, y, z)i + F2(x, y, z)j + F3(x, y, z)k be a vector field whose components

F1(x, y, z), F2(x, y, z), and F3(x, y, z) have continuous first order partial derivatives. If
∫
C1

F(x, y, z) ·
→
dl=

∫
C2

F(x, y, z) ·
→
dl for every pair of smooth curves C1 and C2 joining any two given points P and Q

then F(x, y, z) =∇φ for some function φ.
Proof. We give a formula for φ then verify that it has the required properties. To this end, fix a point
P (a, b, c) in R3. Let Q (x, y, z) be any point in R3 and C any smooth curve joining P and Q. We define

φ(x, y, z) =

∫
C

F(x, y, z) ·
→
dl

This is a well-defined function because the integral is independent of the curve joining P and Q.

Q

P

We must show that φx (x0, y0, z0) = F1 (x0, y0, z0), φy (x0, y0, z0) = F2 (x0, y0, z0), and φz (x0, y0, z0) =
F3 (x0, y0, z0) for all (x0, y0, z0) in the domain of F. It suffi ces to verify any one of them because the same
method applies to any one of the three. Therefore we show that

lim
h→0

φ (x0 + h, y0, z0)− φ (x0 + h, y0, z0)
h

= F1 (x0, y0, z0)

This is equivalent to

lim
h→0

∣∣∣∣φ (x0 + h, y0, z0)− φ (x0 + h, y0, z0)− hF1 (x0, y0, z0)h

∣∣∣∣ = 0
More precisely, we show that given any ε > 0, we can find a δ > 0 such that |h| < δ implies∣∣∣∣φ (x0 + h, y0, z0)− φ (x0 + h, y0, z0)− hF1 (x0, y0, z0)h

∣∣∣∣ < ε.

For any h, let R be the point (x0 + h, y0, z0) and C1 the line segment joining (x0, y0, z0) and (x0 + h, y0, z0).
Then

φ (x0 + h, y0, z0)− φ (x0 + h, y0, z0) =
∫
C1

F(x, y, z) ·
→
dl (3)

When we parametrize C1 as (x(t), y(t), z(t)) where x(t) = x0 + th, y(t) = y0 and z(t) = z0, the right hand
side of (3) becomes∫ 1

0

F1 (x(t), y(t), z(t))x
′(t)dt+

∫ 1

0

F2 (x(t), y(t), z(t)) y
′(t)dt+

∫ 1

0

F3 (x(t), y(t), z(t)) z
′(t)dt
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Since y′(t) = 0 = z′(t), we obtain

φ (x0 + h, y0, z0)− φ (x0 + h, y0, z0) =
∫ 1

0

F1(x0 + th, y0, z0)hdt.

Therefore∣∣∣∣φ (x0 + h, y0, z0)− φ (x0 + h, y0, z0)− hF1 (x0, y0, z0)h

∣∣∣∣ = ∣∣∣∣∫ 1

0

F1(x0 + th, y0, z0)dt− F1 (x0, y0, z0)
∣∣∣∣

We may write
∫ 1

0

F1(x0 + th, y0, z0)dt − F1 (x0, y0, z0) as
∫ 1

0

[F1(x0 + th, y0, z0)− F1 (x0, y0, z0)] dt. Now
note that ∣∣∣∣∫ 1

0

[F1(x0 + th, y0, z0)− F1 (x0, y0, z0)] dt
∣∣∣∣ ≤ ∫ 1

0

|F1(x0 + th, y0, z0)− F1 (x0, y0, z0)| dt

By the Mean Value Theorem, there is a point (θ, y0, z0) on C1 such that

|F1(x0 + th, y0, z0)− F1 (x0, y0, z0)| = (|th|) |(F1)x (θ, y0, z0)| .

The continuity of the partial derivatives of F1 implies that there is a constant K and a positive number r
such that |(F1)x (x, y, z)| ≤ K for all points (x, y, z) in the sphere centered at (x0, y0, z0) with radius r. If
(x0 + h, y0, z0) is such a point then∣∣∣∣φ (x0 + h, y0, z0)− φ (x0 + h, y0, z0)− hF1 (x0, y0, z0)h

∣∣∣∣ < ∫ 1

0

K |th| dt = 1
2K |h|

It follows that given ε > 0, if we choose any δ less than the smaller of the two numbers
2ε

K
and r then |h| < δ

implies ∣∣∣∣φ (x0 + h, y0, z0)− φ (x0 + h, y0, z0)− hF1 (x0, y0, z0)h

∣∣∣∣ < ε
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