

Line Integral of a Vector Field

The line integral of a vector field $\mathbf{F}(x, y, z) = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$ along a curve C defined by $\mathbf{c}(t) = \langle x(t), y(t), z(t) \rangle$, $a \leq t \leq b$ is calculated the same way we calculated the work done by a variable force. The first step is to partition C into small elements, by dividing the interval $[a, b]$ into small subintervals $[t_0, t_1], [t_1, t_2], \dots, [t_{n-1}, t_n]$ where $a = t_0 < t_1 < t_2 < \dots < t_{n-1} < t_n = b$. Let $\Delta x_i = x(t_{i+1}) - x(t_i)$, $\Delta y_i = y(t_{i+1}) - y(t_i)$, $\Delta z_i = z(t_{i+1}) - z(t_i)$ and $\vec{\Delta l}_i = \Delta x_i \mathbf{i} + \Delta y_i \mathbf{j} + \Delta z_i \mathbf{k}$. The next step is to form the sum

$$\sum_{i=0}^{n-1} \mathbf{F}(x(t_i), y(t_i), z(t_i)) \cdot \vec{\Delta l}_i = \sum_{i=0}^{n-1} \mathbf{F}(x(t_i), y(t_i), z(t_i)) \cdot ([x(t_{i+1}) - x(t_i)] \mathbf{i} + [y(t_{i+1}) - y(t_i)] \mathbf{j} + [z(t_{i+1}) - z(t_i)] \mathbf{k}) \quad (1)$$

The right hand side of (1) expands as

$$\begin{aligned} & \sum_{i=0}^{n-1} F_1(x(t_i), y(t_i), z(t_i)) [x(t_{i+1}) - x(t_i)] + \sum_{i=0}^{n-1} F_2(x(t_i), y(t_i), z(t_i)) [y(t_{i+1}) - y(t_i)] \\ & + \sum_{i=0}^{n-1} F_3(x(t_i), y(t_i), z(t_i)) [z(t_{i+1}) - z(t_i)] \end{aligned}$$

The limit of such sums as all the lengths $|t_{i+1} - t_i|$ tend to zero is called the line integral of $\mathbf{F}(x(t_i), y(t_i), z(t_i))$ along C . It is denoted by $\int_C \mathbf{F}(x, y, z) \cdot \vec{dl}$. Actually we have already run into these limits. The limit of $\sum_{i=0}^{n-1} F_1(x(t_i), y(t_i), z(t_i)) [x(t_{i+1}) - x(t_i)]$ is the line integral of F_1 along C with respect to x , etc. Therefore

$$\int_C \mathbf{F}(x, y, z) \cdot \vec{dl} = \int_C F_1(x, y, z) dx + F_2(x, y, z) dy + F_3(x, y, z) dz$$

If $x(t), y(t), z(t)$ have continuous derivatives then using the results we derived about line integrals with respect to variables gives

$$\int_C \mathbf{F}(x, y, z) \cdot \vec{dl} = \int_a^b (F_1(x(t), y(t), z(t))x'(t) + F_2(x(t), y(t), z(t))y'(t) + F_3(x(t), y(t), z(t))z'(t)) dt.$$

The following is the formal definition:

Definition 1 Let $\mathbf{F}(x, y, z) = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$ be a given vector field and C be a curve parametrized by $\mathbf{c}(t) = \langle x(t), y(t), z(t) \rangle$, $a \leq t \leq b$. The line integral of \mathbf{F} along C is denoted by $\int_C \mathbf{F}(x, y, z) \cdot \vec{dl}$ and is defined by

$$\int_C \mathbf{F}(x, y, z) \cdot \vec{dl} = \int_C F_1(x, y, z) dx + F_2(x, y, z) dy + F_3(x, y, z) dz$$

Example 2 Let $\mathbf{F}(x, y, z) = \langle yz, xz, xy \rangle$ and C be defined by $\mathbf{c}(t) = \langle 4t+1, t^2, 2t-3 \rangle$, $0 \leq t \leq 3$. Then $F_1(x, y, z) = yz$, $F_2(x, y, z) = xz$, $F_3(x, y, z) = xy$, $x(t) = 4t+1$, $y(t) = t^2$ and $z(t) = 2t-3$. The line integral of \mathbf{F} over C is

$$\begin{aligned} \int_C \mathbf{F}(x, y, z) \cdot \vec{dl} &= \int_C yz dx + xz dy + xy dz \\ &= \int_0^3 [t^2(2t-3) + (4t+1)(2t-3)2t + t^2(4t+1)2] dt \\ &= \int_0^3 (32t^3 - 30t^2 - 6t) dt \\ &= [4t^4 - 10t^3 - 3t^2]_0^3 = 27 \end{aligned}$$

Exercise 3 Evaluate the line integral $\int_C \mathbf{F}(x, y, z) \cdot \vec{dl}$ given that

1. $\mathbf{F}(x, y, z) = 3y\mathbf{i} - 4z\mathbf{j} - 2xyz\mathbf{k}$ and C is defined by $\mathbf{c}(t) = \langle t^2, t^3, 2t \rangle, 0 \leq t \leq 1$.
2. $\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j} - (z + y)\mathbf{k}$ and C is defined by $\mathbf{c}(t) = \langle \cos t, \sin t, t \rangle, 0 \leq t \leq \pi/3$.
3. $\mathbf{F}(x, y, z) = (x + y)\mathbf{i} - xy\mathbf{j} - (z + y)\mathbf{k}$ and C is defined by $\mathbf{c}(t) = \langle e^t, 3e^t, t \rangle, 0 \leq t \leq \pi/3$.

The next theorem gives us a quick method of evaluating a line integral of a conservative vector field.

Theorem 4 Let $\mathbf{F}(x, y, z) = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$ be a conservative vector field with potential function ϕ and C be a smooth curve defined by $\mathbf{c}(t) = \langle x(t), y(t), z(t) \rangle, a \leq t \leq b$. Then $\int_C \mathbf{F}(x, y, z) \cdot \vec{dl} = \phi(x(b), y(b), z(b)) - \phi(x(a), y(a), z(a))$.

Proof. By definition, $\int_C \mathbf{F}(x, y, z) \cdot \vec{dl} = \int_C F_1(x, y, z)dx + F_2(x, y, z)dy + F_3(x, y, z)dz$. The potential function satisfies the three conditions

$$F_1(x, y, z) = \phi_x(x, y, z), \quad F_2(x, y, z) = \phi_y(x, y, z), \quad \text{and} \quad F_3(x, y, z) = \phi_z(x, y, z).$$

Therefore

$$\begin{aligned} \int_C \mathbf{F}(x, y, z) \cdot \vec{dl} &= \int_C \phi_x(x, y, z)dx + \phi_y(x, y, z)dy + \phi_z(x, y, z)dz \\ &= \int_a^b [\phi_x(x(t), y(t), z(t))x'(t) + \phi_y(x(t), y(t), z(t))y'(t) + \phi_z(x(t), y(t), z(t))z'(t)] dt \end{aligned}$$

By the chain rule, the real-valued function $g(t) = \phi \circ \mathbf{c}(t)$ of one variable t has derivative $g'(t)$ given by

$$g'(t) = \begin{pmatrix} \phi_x(x(t), y(t), z(t)) & \phi_y(x(t), y(t), z(t)) & \phi_z(x(t), y(t), z(t)) \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix}$$

On multiplying the two matrices we get the very integrand in the above integral. Therefore

$$\int_C \mathbf{F}(x, y, z) \cdot \vec{dl} = \int_a^b g'(t)dt = g(b) - g(a) = \phi(x(b), y(b), z(b)) - \phi(x(a), y(a), z(a)).$$

■

Two useful results follow from Theorem 4

1. If $\mathbf{F}(x, y, z)$ is a conservative vector field and C is a smooth closed curve then $\int_C \mathbf{F}(x, y, z) \cdot \vec{dl} = \mathbf{0}$. To see this take a potential ϕ for F . Say C starts and ends at a . Then

$$\int_C \mathbf{F}(x, y, z) \cdot \vec{dl} = \phi(x(a), y(a), z(a)) - \phi(x(a), y(a), z(a)) = 0.$$

2. If $\mathbf{F}(x, y, z)$ is a conservative vector field and C_1, C_2 are smooth curves that join two points P and Q then

$$\int_{C_1} \mathbf{F}(x, y, z) \cdot \vec{dl} = \int_{C_2} \mathbf{F}(x, y, z) \cdot \vec{dl}. \quad (2)$$

To see this, consider the piecewise smooth curve $C = C_1 - C_2$. It is closed, therefore

$$0 = \int_{C_1 - C_2} \mathbf{F}(x, y, z) \cdot \vec{dl} = \int_{C_1} \mathbf{F}(x, y, z) \cdot \vec{dl} - \int_{C_2} \mathbf{F}(x, y, z) \cdot \vec{dl}$$

which implies (2).

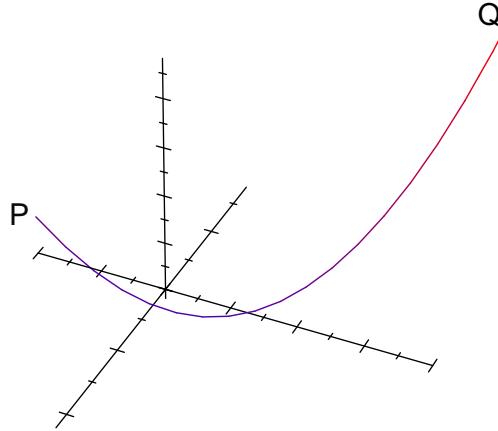
The converse of the assertion in (2) is also true under certain conditions, namely:

Theorem 5 Let $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$ be a vector field whose components $F_1(x, y, z)$, $F_2(x, y, z)$, and $F_3(x, y, z)$ have continuous first order partial derivatives. If $\int_{C_1} \mathbf{F}(x, y, z) \cdot \vec{dl} = \int_{C_2} \mathbf{F}(x, y, z) \cdot \vec{dl}$ for every pair of smooth curves C_1 and C_2 joining any two given points P and Q then $\mathbf{F}(x, y, z) = \nabla\phi$ for some function ϕ .

Proof. We give a formula for ϕ then verify that it has the required properties. To this end, fix a point $P(a, b, c)$ in \mathbb{R}^3 . Let $Q(x, y, z)$ be any point in \mathbb{R}^3 and C any smooth curve joining P and Q . We define

$$\phi(x, y, z) = \int_C \mathbf{F}(x, y, z) \cdot \vec{dl}$$

This is a well-defined function because the integral is independent of the curve joining P and Q .



We must show that $\phi_x(x_0, y_0, z_0) = F_1(x_0, y_0, z_0)$, $\phi_y(x_0, y_0, z_0) = F_2(x_0, y_0, z_0)$, and $\phi_z(x_0, y_0, z_0) = F_3(x_0, y_0, z_0)$ for all (x_0, y_0, z_0) in the domain of \mathbf{F} . It suffices to verify any one of them because the same method applies to any one of the three. Therefore we show that

$$\lim_{h \rightarrow 0} \frac{\phi(x_0 + h, y_0, z_0) - \phi(x_0, y_0, z_0)}{h} = F_1(x_0, y_0, z_0)$$

This is equivalent to

$$\lim_{h \rightarrow 0} \left| \frac{\phi(x_0 + h, y_0, z_0) - \phi(x_0, y_0, z_0) - hF_1(x_0, y_0, z_0)}{h} \right| = 0$$

More precisely, we show that given any $\varepsilon > 0$, we can find a $\delta > 0$ such that $|h| < \delta$ implies

$$\left| \frac{\phi(x_0 + h, y_0, z_0) - \phi(x_0, y_0, z_0) - hF_1(x_0, y_0, z_0)}{h} \right| < \varepsilon.$$

For any h , let R be the point $(x_0 + h, y_0, z_0)$ and C_1 the line segment joining (x_0, y_0, z_0) and $(x_0 + h, y_0, z_0)$. Then

$$\phi(x_0 + h, y_0, z_0) - \phi(x_0, y_0, z_0) = \int_{C_1} \mathbf{F}(x, y, z) \cdot \vec{dl} \quad (3)$$

When we parametrize C_1 as $(x(t), y(t), z(t))$ where $x(t) = x_0 + th$, $y(t) = y_0$ and $z(t) = z_0$, the right hand side of (3) becomes

$$\int_0^1 F_1(x(t), y(t), z(t)) x'(t) dt + \int_0^1 F_2(x(t), y(t), z(t)) y'(t) dt + \int_0^1 F_3(x(t), y(t), z(t)) z'(t) dt$$

Since $y'(t) = 0 = z'(t)$, we obtain

$$\phi(x_0 + h, y_0, z_0) - \phi(x_0 + h, y_0, z_0) = \int_0^1 F_1(x_0 + th, y_0, z_0) h dt.$$

Therefore

$$\left| \frac{\phi(x_0 + h, y_0, z_0) - \phi(x_0 + h, y_0, z_0) - hF_1(x_0, y_0, z_0)}{h} \right| = \left| \int_0^1 F_1(x_0 + th, y_0, z_0) dt - F_1(x_0, y_0, z_0) \right|$$

We may write $\int_0^1 F_1(x_0 + th, y_0, z_0) dt - F_1(x_0, y_0, z_0)$ as $\int_0^1 [F_1(x_0 + th, y_0, z_0) - F_1(x_0, y_0, z_0)] dt$. Now note that

$$\left| \int_0^1 [F_1(x_0 + th, y_0, z_0) - F_1(x_0, y_0, z_0)] dt \right| \leq \int_0^1 |F_1(x_0 + th, y_0, z_0) - F_1(x_0, y_0, z_0)| dt$$

By the Mean Value Theorem, there is a point (θ, y_0, z_0) on C_1 such that

$$|F_1(x_0 + th, y_0, z_0) - F_1(x_0, y_0, z_0)| = (|th|) |(F_1)_x(\theta, y_0, z_0)|.$$

The continuity of the partial derivatives of F_1 implies that there is a constant K and a positive number r such that $|(F_1)_x(x, y, z)| \leq K$ for all points (x, y, z) in the sphere centered at (x_0, y_0, z_0) with radius r . If $(x_0 + h, y_0, z_0)$ is such a point then

$$\left| \frac{\phi(x_0 + h, y_0, z_0) - \phi(x_0 + h, y_0, z_0) - hF_1(x_0, y_0, z_0)}{h} \right| < \int_0^1 K |th| dt = \frac{1}{2} K |h|$$

It follows that given $\varepsilon > 0$, if we choose any δ less than the smaller of the two numbers $\frac{2\varepsilon}{K}$ and r then $|h| < \delta$ implies

$$\left| \frac{\phi(x_0 + h, y_0, z_0) - \phi(x_0 + h, y_0, z_0) - hF_1(x_0, y_0, z_0)}{h} \right| < \varepsilon$$

■