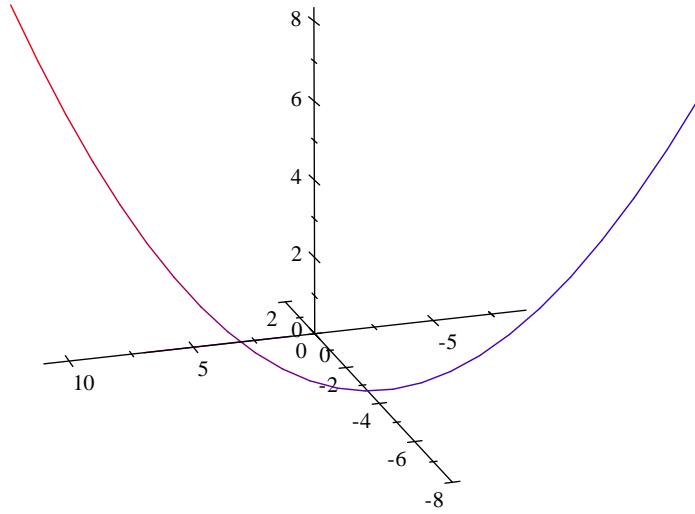


Line Integral of a Function With Respect to a Variable

Let $f(x, y, z)$ be a given function of the three variables x, y and z . We wish to introduce line integrals of f with respect to x or y or z . We will meet these integrals when integrating vector valued functions along curves. They are best illustrated by the concept of work done when a body, acted on by a variable force, is moved along a curve.

Example 1 Consider a body that is acted on by a force $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$, when it is at a point (x, y, z) in space, and a curve C defined by $\mathbf{c}(t) = \langle x(t), y(t), z(t) \rangle$, $a \leq t \leq b$. For a specific curve C , we take $\mathbf{c}(t) = \langle t - 3, 2t + 1, \frac{1}{3}t^2 \rangle$, $-5 \leq t \leq 5$.



$$\text{The curve } \mathbf{c}(t) = \langle t - 3, 2t + 1, \frac{1}{3}t^2 \rangle, -5 \leq t \leq 5.$$

What is the work done to move the body along C from a point $(x(a), y(a), z(a))$ to $(x(b), y(b), z(b))$? If $\mathbf{F}(x, y, z)$ is not a constant, we have to resort to integration for an answer. You should expect the usual procedure, which is:

- Partition the curve into smaller curved segments by partitioning the interval $[a, b]$ into smaller subintervals $[t_0, t_1], [t_1, t_2], \dots, [t_{n-1}, t_n]$ where

$$a = t_0 < t_1 < t_2 < \dots < t_{n-1} < t_n = b$$

- Estimate the work done to move the object along each curved segment.
- Total up to get an approximate value of the work done to move the object along the entire curve then determine the limit of such sums.

To get down to the details, denote the segment of the curve that starts from $(x(t_i), y(t_i), z(t_i))$ and ends at $(x(t_{i+1}), y(t_{i+1}), z(t_{i+1}))$ by C_i . When the subinterval $[t_i, t_{i+1}]$ is sufficiently small, the force $\mathbf{F}(x, y, z)$ is practically constant along C_i and equal to

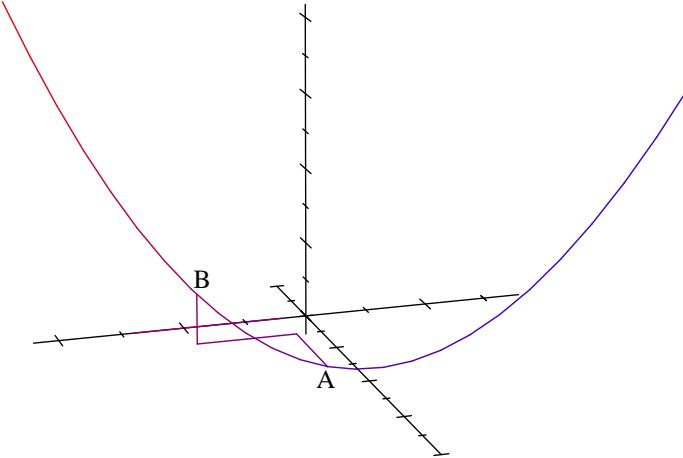
$$\mathbf{F}(x(t_i), y(t_i), z(t_i)) = (F_1(x(t_i), y(t_i), z(t_i)), F_2(x(t_i), y(t_i), z(t_i)), F_3(x(t_i), y(t_i), z(t_i)))$$

We approximate the work done to move the object along C_i by the work done to move it in 3 steps as follows:

1. Move it from $(x(t_i), y(t_i), z(t_i))$ to $(x(t_{i+1}), y(t_i), z(t_i))$ along the line segment joining the two points.

2. Move it from $(x(t_{i+1}), y(t_i), z(t_i))$ to $(x(t_{i+1}), y(t_{i+1}), z(t_i))$ along the line segment joining the two points.
3. Move it from $(x(t_{i+1}), y(t_{i+1}), z(t_i))$ to $(x(t_{i+1}), y(t_{i+1}), z(t_{i+1}))$ along the line segment joining the two points.

For example, if C_i is the segment joining $A(3, -1, 0)$ to $B(1, -5, 1.5)$ then we would move the object as shown below, from $(3, -1, 0)$ to $(1, -1, 0)$, then to $(1, -5, 0)$ and finally to $B(1, -5, 1.5)$.



By definition, the work done by a force is

$$(\text{Magnitude of the force}) \times (\text{Distance moved in the direction of the force})$$

In moving the object from $(x(t_i), y(t_i), z(t_i))$ to $(x(t_{i+1}), y(t_i), z(t_i))$ along the line segment joining the two points, the distance moved in the direction of $F_1(x(t_i), y(t_i), z(t_i))\mathbf{i}$ is $x(t_{i+1}) - x(t_i)$. The distance is zero in the directions of $F_2(x(t_i), y(t_i), z(t_i))\mathbf{j}$ and $F_3(x(t_i), y(t_i), z(t_i))\mathbf{k}$. Therefore the work done is approximately

$$F_1(x(t_i), y(t_i), z(t_i)) \times [x(t_{i+1}) - x(t_i)]$$

In moving the object from $(x(t_{i+1}), y(t_i), z(t_i))$ to $(x(t_{i+1}), y(t_{i+1}), z(t_i))$ along the line segment joining the two points, the distance moved in the direction of $F_2(x(t_i), y(t_i), z(t_i))\mathbf{j}$ is $y(t_{i+1}) - y(t_i)$, and it is zero in the directions of $F_1(x(t_i), y(t_i), z(t_i))\mathbf{i}$ and $F_3(x(t_i), y(t_i), z(t_i))\mathbf{k}$. Therefore the work done is approximately

$$F_2(x(t_i), y(t_i), z(t_i)) \times [y(t_{i+1}) - y(t_i)]$$

Finally, the work done in moving it from $(x(t_{i+1}), y(t_{i+1}), z(t_i))$ to $(x(t_{i+1}), y(t_{i+1}), z(t_{i+1}))$ along the line segment joining the two points is approximately

$$F_3(x(t_i), y(t_i), z(t_i)) \times [z(t_{i+1}) - z(t_i)]$$

Therefore an estimate of the work done to move the object from $(x(t_i), y(t_i), z(t_i))$ to $(x(t_{i+1}), y(t_{i+1}), z(t_{i+1}))$ is

$$\left. \begin{aligned} & F_1(x(t_i), y(t_i), z(t_i)) [x(t_{i+1}) - x(t_i)] + F_2(x(t_i), y(t_i), z(t_i)) [y(t_{i+1}) - y(t_i)] \\ & + F_3(x(t_i), y(t_i), z(t_i)) [z(t_{i+1}) - z(t_i)] \end{aligned} \right\} \quad (1)$$

The sum of these n approximations gives an approximate value of the work done to move the object from $(x(-\pi), y(-\pi), z(-\pi))$ to $(x(\pi), y(\pi), z(\pi))$ and it is

$$\left. \begin{aligned} & \sum_{i=0}^{n-1} F_1(x(t_i), y(t_i), z(t_i)) [x(t_{i+1}) - x(t_i)] + \sum_{i=0}^{n-1} F_2(x(t_i), y(t_i), z(t_i)) [y(t_{i+1}) - y(t_i)] \\ & + \sum_{i=0}^{n-1} F_3(x(t_i), y(t_i), z(t_i)) [z(t_{i+1}) - z(t_i)] \end{aligned} \right\} \quad (2)$$

The limit of these sums as all the lengths $[x(t_{i+1}) - x(t_i)], [y(t_{i+1}) - y(t_i)], [z(t_{i+1}) - z(t_i)]$ shrink to zero should be the exact amount of work done to move the object from $(x(-\pi), y(-\pi), z(-\pi))$ to $(x(\pi), y(\pi), z(\pi))$. It is actually a sum of three limits which are:

- The limit of $\sum_{i=0}^{n-1} F_1(x(t_i), y(t_i), z(t_i)) [x(t_{i+1}) - x(t_i)]$ as all the lengths $[x(t_{i+1}) - x(t_i)]$ shrink to zero. It is called the line integral of F_1 along C with respect to x and is denoted by

$$\int_C F_1(x, y, z) dx$$

Why $\int_C F_1(x, y, z) dx$? Because we pick points $(x(t_i), y(t_i), z(t_i))$ on the curve C , multiply each function value $F_1(x(t_i), y(t_i), z(t_i))$ by the "length" $[x(t_{i+1}) - x(t_i)]$ involving x only then determine the limit of the sums

$$\sum_{i=0}^{n-1} F_1(x(t_i), y(t_i), z(t_i)) [x(t_{i+1}) - x(t_i)]$$

as the lengths of all the intervals $[t_0, t_1], [t_1, t_2], \dots, [t_{n-1}, t_n]$ shrink to zero.

- The limit of $\sum_{i=0}^{n-1} F_2(x(t_i), y(t_i), z(t_i)) [y(t_{i+1}) - y(t_i)]$ as all the lengths $[y(t_{i+1}) - y(t_i)]$ shrink to zero. It is called the line integral of F_2 along C with respect to y and is denoted by

$$\int_C F_2(x, y, z) dy$$

- The limit of $\sum_{i=0}^{n-1} F_3(x(t_i), y(t_i), z(t_i)) [z(t_{i+1}) - z(t_i)]$ as all the lengths $[z(t_{i+1}) - z(t_i)]$ shrink to zero. It is called the line integral of F_3 along C with respect to z and is denoted by

$$\int_C F_3(x, y, z) dz$$

Therefore the work done to move the object from $(x(a), y(a), z(a))$ to $(x(b), y(b), z(b))$ is

$$\int_C F_1(x, y, z) dx + \int_C F_2(x, y, z) dy + \int_C F_3(x, y, z) dz$$

This is written briefly as

$$\int_C F_1(x, y, z) dx + F_2(x, y, z) dy + F_3(x, y, z) dz$$

To evaluate these integrals using antiderivatives, we use the Mean Value Theorem to replace the lengths $[x(t_{i+1}) - x(t_i)], [y(t_{i+1}) - y(t_i)]$ and $[z(t_{i+1}) - z(t_i)]$ with terms involving $(t_{i+1} - t_i)$. The theorem asserts that there is a number θ_i between t_i and t_{i+1} such that

$$x(t_{i+1}) - x(t_i) = x'(\theta_i) (t_{i+1} - t_i)$$

If we assume that x' is a continuous function of t then $x'(\theta_i) \simeq x'(t_i)$, hence $x(t_{i+1}) - x(t_i)$ may be approximated by $x'(t_i) (t_{i+1} - t_i)$ and $\sum_{i=0}^{n-1} F_1(x(t_i), y(t_i), z(t_i)) [x(t_{i+1}) - x(t_i)]$ may be approximated by

$$\sum_{i=0}^{n-1} F_1(x(t_i), y(t_i), z(t_i)) x'(t_i) (t_{i+1} - t_i) \tag{3}$$

The limit of (3) as the lengths of all the intervals $[t_0, t_1], [t_1, t_2], \dots, [t_{n-1}, t_n]$ shrink to zero is

$$\int_{-\pi}^{\pi} F_1(x(t), y(t), z(t))x'(t)dt$$

In other words, if $x'(t)$ is continuous as a function of t then

$$\int_C F_1(x, y, z)dx = \int_{-\pi}^{\pi} F_1(x(t), y(t), z(t))x'(t)dt$$

One shows in a similar way that if $y'(t)$ and $z'(t)$ are continuous functions of t then

$$\int_C F_2(x, y, z)dy = \int_{-\pi}^{\pi} F_2(x(t), y(t), z(t))y'(t)dt$$

and

$$\int_C F_3(x, y, z)dz = \int_{-\pi}^{\pi} F_3(x(t), y(t), z(t))z'(t)dt$$

Therefore the work done to move the object from $\mathbf{c}(a)$ to $\mathbf{c}(b)$ is

$$\int_{-a}^b [F_1(x(t), y(t), z(t))x'(t) + F_2(x(t), y(t), z(t))y'(t) + F_3(x(t), y(t), z(t))z'(t)]dt$$

In the specific example we cited, $x(t) = t - 3$, $y(t) = 2t + 1$, and $z(t) = \frac{1}{3}t^2$, $-5 \leq t \leq 5$. Suppose

$$F_1(x, y, z) = y^2, F_2(x, y, z) = 2y - x, \text{ and } F_3(x, y, z) = 3x - z$$

Then $F_1(x(t), y(t), z(t))x'(t)dt = [y(t)]^2 (1) dt = (2t + 1)^2 dt$, and the integral of F_1 along C with respect to x is

$$\int_{-5}^5 (2t + 1)^2 dt = \frac{1}{6} \left[(2t + 1)^3 \right]_{-5}^5 = \frac{1030}{3}$$

The integral of F_2 along C with respect to y is

$$\int_{-5}^5 (2(2t + 1) - t + 3) 2dt = \int_{-5}^5 (6t + 10) dt = \left[3t^2 + 10t \right]_{-5}^5 = 100$$

The integral of F_3 along C with respect to z is

$$\int_{-5}^5 \left(3(t - 3) - \frac{1}{3}t^2 \right) \frac{2t}{3} dt = \int_{-5}^5 \left(2t^2 - 6t - \frac{2t^3}{9} \right) dt = \left[\frac{2t^3}{3} - 3t^2 - \frac{t^4}{18} \right]_{-5}^5 = \frac{500}{3}$$

Therefore the work done to move the object is

$$\int_{-5}^5 \left[(2t + 1)^2 + (6t + 10) + \left(2t^2 - 6t - \frac{2t^3}{9} \right) \right] dt = \frac{1030}{3} + 100 + \frac{500}{3} = 610 \text{ units.}$$

Remark 2 If we denote $x(t_{i+1}) - x(t_i)$ by Δx_i , $y(t_{i+1}) - y(t_i)$ by Δy_i , $z(t_{i+1}) - z(t_i)$ by Δz_i and define $\vec{\Delta l}_i = \Delta x_i \mathbf{i} + \Delta y_i \mathbf{j} + \Delta z_i \mathbf{k}$ then (1), (the work done to move the body from $(x(t_i), y(t_i), z(t_i))$ to $(x(t_{i+1}), y(t_{i+1}), z(t_{i+1}))$) is approximately equal to.

$$\mathbf{F}(x_i, y_i, z_i) \cdot \vec{\Delta l}_i$$

Also (2), (the total work done to move the object from $(x(a), y(a), z(a))$ to $(x(b), y(b), z(b))$) is approximately equal to

$$\sum_{i=0}^{n-1} \mathbf{F}(x_i, y_i, z_i) \cdot \vec{\Delta l}_i$$

We will use these expressions to define line integrals of more general vector valued functions.

Example 3 Let $f(x, y) = x^3y^2 + 4xy - 1$ and C be that part of the parabola $y = x^2$ on the interval $[-1, 2]$. To determine $\int_C f(x, y)dx$ and $\int_C f(x, y)dy$.

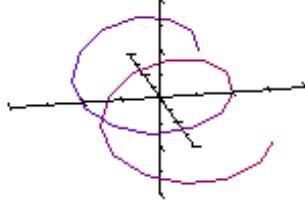
We must parametrize C . One possible parametrization is $x(t) = t$, $y(t) = t^2$, $-1 \leq t \leq 2$. This implies that $x'(t) = 1$ and $y'(t) = 2t$. Therefore

$$\begin{aligned}\int_C f(x, y)dx &= \int_{-1}^2 \left(t^3 (t^2)^2 + 4t (t^2) - 1 \right) dt = \int_{-1}^2 (t^7 + 4t^3 - 1) dt \\ &= \left[\frac{t^8}{8} + t^4 - t \right]_{-1}^2 = 43\frac{7}{8}\end{aligned}$$

and

$$\int_C f(x, y)dy = \int_{-1}^2 (t^7 + 4t^3 - 1) 2tdt = \int_{-1}^2 (2t^8 + 8t^4 - 2t) dt = 163.8$$

Example 4 To evaluate $\int_C (3x - z + 4y^2) dz$ given that C is the curve $\mathbf{c}(t) = \langle t, \cos \pi t, \sin \pi t \rangle$, $-\frac{1}{2} \leq t \leq 1$, (a helix).



The helix $\mathbf{c}(t) = \langle t, \cos \pi t, \sin \pi t \rangle$, $-\frac{1}{2} \leq t \leq 1$.

We are given that $x(t) = t$, $y(t) = \cos \pi t$ and $z(t) = \sin \pi t$. Consequently, $z'(t) = \pi \cos \pi t$. The function to integrate with respect to z is $f(x, y, z) = 3x - z + 4y^2$ and

$$f(x(t), y(t), z(t)) = 3t - \sin \pi t + 4 \cos^2 \pi t$$

Therefore

$$\begin{aligned}\int_C (3x - z + 4y^2) dz &= \int_{-\frac{1}{2}}^1 (3t - \sin \pi t + 4 \cos^2 \pi t) (\pi \cos \pi t) dt \\ &= 3\pi \int_{-\frac{1}{2}}^1 t \cos \pi t dt - \pi \int_{-\frac{1}{2}}^1 \sin \pi t \cos \pi t dt + 4\pi \int_{-\frac{1}{2}}^1 \cos^3 \pi t dt\end{aligned}$$

Integrating by parts gives

$$3\pi \int_{-\frac{1}{2}}^1 t \cos \pi t dt = 3\pi \left[\frac{t \sin \pi t}{\pi} + \frac{\cos \pi t}{\pi^2} \right]_{-\frac{1}{2}}^1 = -\frac{3}{\pi} - \frac{3}{2}$$

The second integral is

$$-\pi \int_{-\frac{1}{2}}^1 \sin \pi t \cos \pi t dt = -\pi \left[\frac{\sin^2 \pi t}{2\pi} \right]_{-\frac{1}{2}}^1 = -\pi \left(-\frac{1}{2\pi} \right) = \frac{1}{2}$$

The last integral is

$$\begin{aligned} 4\pi \int_{-\frac{1}{2}}^1 \cos^3 \pi t dt &= 4\pi \int_{-\frac{1}{2}}^1 (1 - \sin^2 \pi t) \cos \pi t dt = 4\pi \int_{-\frac{1}{2}}^1 (\cos \pi t - \sin^2 \pi t \cos \pi t) dt \\ &= 4\pi \left[\frac{\sin \pi t}{\pi} - \frac{\sin^3 \pi t}{3\pi} \right]_{-\frac{1}{2}}^1 = 0 - 4 \left(-1 + \frac{1}{3} \right) = \frac{8}{3} \end{aligned}$$

Therefore

$$\int_C (3x - z + 4y^2) dz = -\frac{3}{\pi} - \frac{3}{2} + \frac{1}{2} + \frac{8}{3} = \frac{5\pi - 9}{3\pi}$$

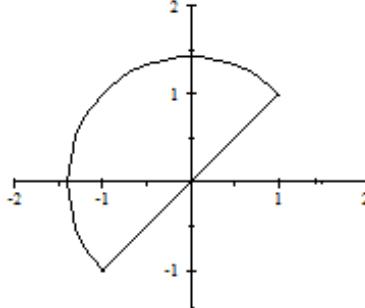
Definition 5 If $C = C_1 + C_2 + \dots + C_k$ then we define $\int_C f(x, y) dx$ and $\int_C f(x, y) dy$ by

$$\int_C f(x, y) dx = \int_{C_1} f(x, y) dx + \int_{C_2} f(x, y) dx + \dots + \int_{C_k} f(x, y) dx$$

and

$$\int_C f(x, y) dy = \int_{C_1} f(x, y) dy + \int_{C_2} f(x, y) dy + \dots + \int_{C_k} f(x, y) dy$$

Example 6 To determine $\int_C f(x, y) dy$ where $f(x, y) = x^2 + y^2 - x$ and C is the closed curve, shown below, consisting of the line segment from $(-1, -1)$ to $(1, 1)$ and the part of the circle $x^2 + y^2 = 2$ above the line $y = x$.



We start by parametrizing C . It is the sum of the line segment C_1 and the segment C_2 of the circle $x^2 + y^2 = 2$. Clearly $C_1 = \{(x(t), y(t))\}$ where $x(t) = t$, $y(t) = t$ and $-1 \leq t \leq 1$. The semicircle is the set $\{(x(t), y(t))\}$ with $x(t) = \cos t$, $y(t) = \sin t$ and $\frac{\pi}{4} \leq t \leq \frac{5\pi}{4}$. It follows that

$$\int_{C_1} f(x, y) dy = \int_{-1}^1 (t^2 + t^2 - t) dt = \left[\frac{2}{3}t^3 - \frac{1}{2}t^2 \right]_{-1}^1 = \frac{4}{3}$$

and

$$\begin{aligned} \int_{C_2} f(x, y) dy &= \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\cos^2 t + \sin^2 t - \cos t) \cos t dt = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\cos t - \cos^2 t) dt \\ &= \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \left(\cos t - \frac{1 + \cos 2t}{2} \right) dt = \left[\sin t - \frac{1}{2}t - \frac{1}{4} \sin 2t \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} = -\pi - \sqrt{2} \end{aligned}$$

$$\text{Therefore } \int_C f(x, y) dy = \int_{C_1} f(x, y) dy + \int_{C_2} f(x, y) dy = \frac{4}{3} - \pi - \sqrt{2}$$

The following definition summarizes what we introduced in Example 1.

Definition 7 Let $f(x, y, z)$ be a given function and C be a curve in the domain of f defined by $\mathbf{c}(t) = \langle x(t), y(t), z(t) \rangle$, $a \leq t \leq b$. Divide the interval $[a, b]$ into smaller subintervals $[t_0, t_1], [t_1, t_2], \dots, [t_{n-1}, t_n]$ where $a = t_0 < t_1 < \dots < t_n = b$. Form the sums

$$\sum_{i=1}^n f(x(t_i), y(t_i), z(t_i)) [x(t_{i+1}) - x(t_i)], \quad \sum_{i=1}^n f(x(t_i), y(t_i), z(t_i)) [y(t_{i+1}) - y(t_i)], \quad \text{and}$$

$$\sum_{i=1}^n f(x(t_i), y(t_i), z(t_i)) [z(t_{i+1}) - z(t_i)]$$

The limit of $\sum_{i=1}^n f(x(t_i), y(t_i), z(t_i)) [x(t_{i+1}) - x(t_i)]$ as the lengths of all the subintervals $[t_i, t_{i+1}]$

shrink to zero is called the line integral of f along C with respect to x and is denoted by $\int_C f(x, y, z) dx$.

If $x(t)$ has a continuous derivative then an application of the Mean Value Theorem gives

$$\int_C f(x, y, z) dx = \int_a^b f(x(t), y(t), z(t)) x'(t) dt. \quad (4)$$

The limit of $\sum_{i=1}^n f(x(t_i), y(t_i), z(t_i)) [y(t_{i+1}) - y(t_i)]$ as the lengths of all the subintervals $[t_i, t_{i+1}]$

shrink to zero is called the integral of f along C with respect to y and is denoted by $\int_C f(x, y, z) dy$. If $y(t)$ has a continuous derivative then an application of the Mean Value Theorem gives

$$\int_C f(x, y, z) dy = \int_a^b f(x(t), y(t), z(t)) y'(t) dt.$$

The limit of $\sum_{i=1}^n f(x(t_i), y(t_i), z(t_i)) [z(t_{i+1}) - z(t_i)]$ as the lengths of all the subintervals $[t_i, t_{i+1}]$

shrink to zero is called the integral of f along C with respect to z and is denoted by $\int_C f(x, y, z) dz$. If $z(t)$ has a continuous derivative then an application of the Mean Value Theorem gives

$$\int_C f(x, y, z) dz = \int_a^b f(x(t), y(t), z(t)) z'(t) dt.$$

Exercise 8

1. Evaluate the given integral:

(a) $\int_C (xy + 3x - zy) dz$ where C is the line segment from $(0, 0, 0)$ to $(4, 3, 2)$.

(b) $\int_C (xy - y^2) dx$ where C is the line segment from $(-4, 3)$ to $(1, 5)$.

(c) $\int_C x^2 dy - 4xy dx$ where C is the semicircle $x^2 + y^2 = 1$ from $(1, 0)$ to $(-1, 0)$.

(d) $\int_C f(x, y) dx$ where $f(x, y) = x^2 + y^2 - x$ and C is the curve in Example 6 consisting of the line segment from $(-1, -1)$ to $(1, 1)$ and the part of the circle $x^2 + y^2 = 2$ above the line $y = x$.

2. Let C_1 be the line segment joining $(0, 0)$ to $(1, 1)$, C_2 be the part of the curve $y = \sqrt{x}$ from $(1, 1)$ to $(0, 0)$ and $C = C_1 + C_2$. Show that $\int_C 3xy^2 dx = -\frac{1}{4}$ and $\int_C 2x^2 dy = \frac{4}{15}$.

3. In the example we gave to introduce line integrals with respect to given variables, we essentially showed that if $C = \mathbf{c}(t) = \langle x(t), y(t), z(t) \rangle$, $a \leq t \leq b$ is a given curve and a body is acted on by a force $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$ when it is at a point (x, y, z) in space then the work done to move the body from $\mathbf{c}(a)$ to a point $\mathbf{c}(b)$ along the curve is

$$\int_C F_1(x, y, z)dx + F_2(x, y, z)dy + F_3(x, y, z)dz$$

Assume that the functions $x(t)$, $y(t)$, $z(t)$ have continuous derivatives. Show that if $\mathbf{F}(x, y, z)$ is orthogonal to the tangent vector $\mathbf{c}'(t)$ at every point of the curve then the work done is zero.

4. Prove that if $(x_1(t), y_1(t), z_1(t))$, $a \leq t \leq b$ and $(x_2(s), y_2(s), z_2(s))$, $c \leq s \leq d$ are one-to-one parametrizations of C and $f(x, y, z)$ is defined on C then

$$\int_a^b f(x_1(t), y_1(t), z_1(t)) x'_1(t)dt = \int_c^d f(x_2(s), y_2(s), z_2(s)) x'_2(s)ds$$

In other words, the line integral of f along C with respect to x does not depend on the parametrization of C .