Changing Variables in a Double Integral

Changing variables, (i.e. integrating by substitution), in a definite integral

/abf(a:)da:

of a function f of one variable boiled down to determining a suitable function g and an interval [c,d] that
b

g maps onto [a,b] then integrate / f o g(u)g' (u)du instead of/ f(x)dz. We called ¢'(u) a scaling factor

for the change of variable. One had to choose g such that f o g(u)g’(u) has an antiderivative that could be
determined by inspection.
We follow similar steps to change variables in a function of two variables. More precisely, given an integral

/R f(,y)dA

(most probably the type that eludes our attempts to evaluate by iteration), we look for a suitable function
g and a set W that g maps onto R. Then, instead of integrating f over R, we integrate (f o g) x(a scaling
factor) over the W. We will soon give an expression for the scaling factor in terms of g, but before doing
that, here is an example:

Example 1 Let R be the region in the first quadrant enclosed by the curves xy = 1, xy = 4 and the two
linesy =z and y = 9z. The "corners" of R have coordinates ( ,3), (1,1), (2,2) and (%,6).
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The set R

Let f(z,y) = oy + 4. Say we decide to evaluate / f(z,y)dA by iteration. If we fix x we get a function

of one variable y but, this time, its domain depends more elaborately on where x is in the interval [%, 2], If
% <z < %, the domain is [%,Qm] If% <z <1, the domain is [l é], and if 1 < x < 2, the domain is

)
[a:, %] Therefore we have to evaluate three separate integrals which are

9;r
/ / my—i— dydx // xy+ dyd:zc and // xy+ dydm

It turns out that none of these three integrals is a "walk-over”. For example,
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Faced with such challenging integrals, it pays to look for a mapping g that maps a relatively simple set W
onto R and is such that f o g has a simpler formula. Then, instead of integrating f over R, we integrates

fogx(a scaling factor)

1

over W. We show ahead that the mapping g(u,v) = (u%v’z,u%v%), (we explain how to get it), maps the

rectangle {(u,v) : 1 <u <4 and 1 <v <9} onto R. It is easy to verify that fog(u,v) =+/u+ 4. Therefore,
instead of integrating f(x,y) over R, we integrate the simpler function

fogx (a scaling factor) = (Vu+4) x (a scaling factor)

over W. This turns out to be a much easier task.

The scaling Factor
Theorem 2 Let R and W be subsets of R%, g(u,v) = (g1(u,v), g2(u,v)) be a one-to-one function that maps

W onto R and has continuous partial derivatives %, %, % and % Consider the the determinant
Oou’ Ou’ Ov ov
g1 (u,v) g1 (u,v)
ou v
g2 (u,v) g2 (u,v)
ou v
where all the partial derivatives are evaluated at the same point (u,v) in the domain of g. It is generally
0
denoted by m and called the Jacobian of the transformation g(u,v). If a function f(x,y) is integrable
on R then ,
(g1, 92)
dA = ——=="|dA
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Thus the scaling factor for the change of variables is

d(u,v)

A rigorous proof of this statement requires heavy-duty tools which are not accessible till after a course
in real analysis. The following is essentially an intuitive argument that tries to justify the assertion of the
theorem. To simplify the argument, assume that W is a rectangle {(u,v) : a < u < b and ¢ < v < d}. Divide
[a, b] into n smaller subintervals [ug, u1], [u1,us], ..., [un—1,u,] of equal length Au = (b — a)/n where

a=uy < U <Us < < Upo1 < U, =b.

Also divide [c, d] into m smaller subintervals [vg, v1], [v1,v2], ..., [Um—1,Vm] of equal length Av = (d—c¢)/m
where
C=v) <V <V <+ < U1 < U =d.

The mn rectangles W;; = {(u,v) : u; < u < w4y and v; < v < ij} partition divide W into smaller
rectangles. Note that W;; has area AW;; = Aulv. Since g is one-to-one and onto, their images g(W;;)
divide W into smaller regions, (which need not be rectangles). A typical rectangle W;; with vertices at
A(ug,v5), B(uit1,v5), C(uit1,vj41) and D(u;,v;41) is mapped onto a region g(W;;) with "corners" at
P(g1(ui, v5), g2(ui, v5)), Q(g1(tit1,v;), g2(uiv1,v5)), R(g1(wit1, vj41), 92(Uit1, vjt1)) and S(g1(ui, vj41), 92(ui, vj41))-
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The integral of f over R is the limit of the sums

YN f(mivy) x (Area of g(Wiy))

i=1 j=1

where (z;,7;) is a point in g(W;;). An expression for the area of g(Wj;;) may be hard to find, therefore we
approximate it with a region whose area is more obvious. To do so, we appeal to the Mean Value Theorem
for a function of one variable. Applying it to g1 and the two points (u;41,v;), (u;, v;) we conclude that there
is a point (a;, b;) on the line segment joining (u;,v;) and (u;41,v;) such that

dg1 (ai,b;) . 0g1(ai, b))
ou = Lu ou

gl(ui+1avj) - gl(ui;'Uj) = (Ui+1 - Uz)

0 0 iy b 0 iy Ui
Since 2L is continuous, we approximate 91 (ai,b;) with 22 (ui, v ) Therefore
ou ou 0
0g1 (u;,v;
g1 (ui+1, ’Uj) ~ g1 (UZ‘, ’Uj) + Au%
We show in a similar way that
dgs (u;,v;
92(wit1,v5) = g2(ui, v5) + AU%
0g1 (ui,v;
g1(ui,vi41) =~ g1(ui,v;) + Av%ﬁj)
u
091 (u;,vj
92(wi, vj1) = g1 (ui, v5) + AU%

We now approximate g(W;;) with the parallelogram that has adjacent sides PQ’ and P.S” where

P is the original point with coordinates (g1 (u;, v;), g2(u;, v5))

9 0 9 s
Q' is a point close to @ that has coordinates <91 (ui,vj) + Au%, ga(ui,v;) + Aqu((;Z’UJ))
0 iy Vg 7] iy Vg
S’ is a point close to S that has coordinates <91 (ui,vj) + AU%UJ), g2(ui, v5) + Av‘(h(auvj)>
v v
Since PQ’ =< Au%, Au% > and PS' =< Av%, Av 992 >, the area of the parallelogram is the norm
ou ou v ov
of the vector
i j k
- - 991 992
PQ/ X PS/ — Au% Au% 0
g1 dg2
Av—— Av—=
v v v v
0
The norm is m Aulv. As expected, we denote Aulv by AA;;. We have to pick a point (6;, a;)
from each region g(W;;). The choice (6;, ;) = g(u;,v;) suffices. Therefore the integral is the limit of the
sums
—~ (g1, 92) —~ d(g1,92)
2 Tt Py | S0 = B d oot ) [y | A4

In other words,

J[r@nin =, tm 3235 om0
R

i=1 j=1

3(917 92)

B(u,v) dA.

(g1, 92)
O(u,v)

Aulrv = //f o g(u, v)
w



Example 3 To evaluate // (\/xy + 4) dA in Example 1, we look for a mapping g(u,v) that maps a rectangle
R

with sides parallel to the coordinate axes onto the given region R. To this end fix a point (a,b) in the u -
v plane. We look for a mapping that maps the vertical line line uw = a onto the curve y = & and maps
x
the horizontal line v = b onto the line y = bx. Thus a point (a,v) on the vertical line is mapped onto the
point with coordinates of the form (:1:, g), (because it must be on the curve y = g). Similarly, a point (u,b)
x
on the horizontal line is mapped onto a point of the form (x,bx). It follows that the point (a,b) where the
horizontal line intersects the vertical line is mapped into a point that satisfies the condition (x,bx) = (1:, E)
x
which implies that
a
br = —
x

1
Solving gives x = ( )2 = azb"2 and bx = (ab)%. Thus the mapping g we are looking for maps a point
a

¢
b 1
(a,b) onto the point ( bz, (ab)f).

L 1 Image of linev=b
Linev=b (ab)
_ T (x.y)
4 Lineu=a
Image of lineu=a
In general, the mapping sends (u,v) onto (u%v*%,u%v%) = (z,y), therefore

1
It maps the vertical line w = 1 onto the curve y = — or simply the curve xy = 1. It maps the vertical lineu = 4
onto the curve xy = 4. The horizontal line v =1 goes into the line y = x and the horizontal line y = 9 goes
into the line y = 9z. Now explain why the points inside the rectangle W = {(u,v) : 1 <u <4 and 1 <v <9}
are mapped onto points inside R.

,1
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The Jacobian matrixz for the transformation g is

%u_%v_% —%u%'v—%
9(g1,92) | _ _ 1
A(u,v) 4v
%ufév% %u%v7%
Therefore
1 1 [[Vu+4 L[ P Vu+14
//(\/xy—i—él)dA = //—fog(u,v)dAzf// vt dA:f// ut dvdu
4v 4 v 41 NI v
R w w
I In9 [* 3In9 314
= 1/ (\/u+4)[lnv]?du:n7 (Vu+4) du = ;l [(u+4)%}1
1 1

(5

Example 4 Let R be the region, shown below, enclosed by the lines y =4z, y =4z + 3, y = —x + 2 and
y = —x — 3. Its vertices have coordinates (—1.2,—1.8), (—0.6,—2.4), (0.4,1.6) and (—0.2,2.2).

L L 1 + + }
-12 -10 08 -06 -04 -02 02 04

Let f(z,y) = 2y + = +y. We wish to determine //f(x,y)dA. We face a similar problem to that in
R

Ezxample 3; we have to evaluate 3 different integrals. To avoid this, we introduce a function g that maps
a rectangle with sides that are parallel to the coordinate axes R. An example is a function g that maps a
vertical line uw = a onto the line y = 4z + a and maps a horizontal line v = b onto the line y = —x + b.
Thus points (a,v) are mapped onto points of the form (x,4x + a) and points (u,b) are mapped onto points
of the form (xz,—x +b). In particular, the point (a,b) is mapped onto a point that satisfies the condition
(x,42 4+ a) = (z,—x +b). Therefore
dr+a=—-x+0

Solving gives v = £ (b — a) and —x+b = £ (4b + a). Thus the point (a,b) is mapped onto (£ (b—a), £ (4b+a)).
In general, a point (u,v) is mapped onto onto (% (v—u), % (4v + u)) = (z,y), therefore the map g we want
is defined by

g(u,v) = (£ (v—u), i (4v+u))



It maps the rectangle W, (shown below), with vertices at (0,—3),(3,-3),(3,2), (0,2) onto the set R.
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Its Jacobian is ) )
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O(u,v) 1 4 5
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Therefore

//f(x,y)dA _ //fog(u, v)dA

1 /3 2
= E5/0 /73(4v273uv7u2+5v)dvdu
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Exercise 5

1. In each of the following problems, you are given a parallelogram R enclosed by four lines and a function
f defined on R. You are required to (i) draw the parallelogram, (ii) determine a function g that

maps a rectangle W, with sides parallel to the coordinate azes, onto R, and (iii) evaluate / fo
w

g(u,v) ‘8(91’ 92) dA.

A(u,v)

(a) R enclosed by the linesy =2z, y=2r+7,y=—-x—1 andy = —x +4, and f(x,y) = = + 3>

(b) R enclosed by the linesy = da+2, y = do—2, y = —x—2 and y = —z+1, and f(z,y) = x+zy+3y.
(c) R enclosed by the linesy = 3z+1,y =325,y = —22+2 andy = —22—6, and f(x,y) = x> +2y
(d) R enclosed by the linesy = 2x+5,y =22—1,y = —2x—3 andy = —2x+5, and f(z,y) = 22 -3y

2. Let R be the region inside the circle x* + y*> = 9 and outside the circle 2> + y?> = 1. Determine a

mapping that maps a rectangle W onto R then evaluate //xydA,
R



Another Look At Integrals In Polar Coordinates

We change variables from Cartesian to polar coordinates by composing a function f(z,y), where x and y
are Cartesian coordinates, with the function

g(?", 0) = (gl({rv 0)&92(r7 9)) - (T (o 9,7’81110)

By Theorem 2, to determine the integral of such a function f(z,y) over a set R in the Cartesian plane, we

M over W. The Jacobian of

must look for a the set W that g maps onto R then integrate f o g(r,6) B, 0)
r?

the transformation is

A(r cos 6) O(r cos )

cos 0 —rsind
or 00
= :r(00320+sin20) =r
O(rsin ) O(rsinb) .
Ee 20 sin 6 rcosf

Therefore

dA = / flrcos,rsinf)rdA. (1)

//f 2, y)dA = / F(r cost TSIDG)‘aéil’@



