
Changing Variables in a Double Integral

Changing variables, (i.e. integrating by substitution), in a definite integral∫ b

a

f(x)dx

of a function f of one variable boiled down to determining a suitable function g and an interval [c, d] that

g maps onto [a, b] then integrate
∫ d

c

f ◦ g(u)g′(u)du instead of
∫ b

a

f(x)dx. We called g′(u) a scaling factor

for the change of variable. One had to choose g such that f ◦ g(u)g′(u) has an antiderivative that could be
determined by inspection.
We follow similar steps to change variables in a function of two variables. More precisely, given an integral∫∫

R

f(x, y)dA,

(most probably the type that eludes our attempts to evaluate by iteration), we look for a suitable function
g and a set W that g maps onto R. Then, instead of integrating f over R, we integrate (f ◦ g) ×(a scaling
factor) over the W . We will soon give an expression for the scaling factor in terms of g, but before doing
that, here is an example:

Example 1 Let R be the region in the first quadrant enclosed by the curves xy = 1, xy = 4 and the two
lines y = x and y = 9x. The "corners" of R have coordinates

(
1
3 , 3
)
, (1, 1), (2, 2) and

(
2
3 , 6
)
.

The set R

Let f(x, y) =
√
xy + 4. Say we decide to evaluate

∫∫
R

f(x, y)dA by iteration. If we fix x we get a function

of one variable y but, this time, its domain depends more elaborately on where x is in the interval
[
1
3 , 2
]
. If

1
3 ≤ x ≤ 2

3 , the domain is
[
1
x , 9x

]
. If 23 ≤ x ≤ 1, the domain is

[
1
x ,

4
x

]
, and if 1 ≤ x ≤ 2, the domain is[

x, 4x
]
. Therefore we have to evaluate three separate integrals which are∫ 2

3

1
3

∫ 9x

1
x

(√
xy + 4

)
dydx,

∫ 1

2
3

∫ 4
x

1
x

(√
xy + 4

)
dydx, and

∫ 2

1

∫ 4
x

x

(√
xy + 4

)
dydx

It turns out that none of these three integrals is a "walk-over". For example,∫ 2
3

1
3

∫ 9x

1
x

(√
xy + 4

)
dydx =

∫ 2
3

1
3

(
2

3

[
1

x
(xy + 4)

3/2

]9x
1
x

)
dx =

2

3

∫ 2
3

1
3

((
9x2 + 4

)3/2
x

− 5
3/2

x

)
dx
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Faced with such challenging integrals, it pays to look for a mapping g that maps a relatively simple set W
onto R and is such that f ◦ g has a simpler formula. Then, instead of integrating f over R, we integrates

f ◦ g × (a scaling factor)

over W . We show ahead that the mapping g(u, v) =
(
u
1
2 v−

1
2 , u

1
2 v

1
2

)
, (we explain how to get it), maps the

rectangle {(u, v) : 1 ≤ u ≤ 4 and 1 ≤ v ≤ 9} onto R. It is easy to verify that f ◦g(u, v) =
√
u+ 4. Therefore,

instead of integrating f(x, y) over R, we integrate the simpler function

f ◦ g × (a scaling factor) =
(√
u+ 4

)
× (a scaling factor)

over W . This turns out to be a much easier task.

The scaling Factor

Theorem 2 Let R and W be subsets of R2, g(u, v) = (g1(u, v), g2(u, v)) be a one-to-one function that maps

W onto R and has continuous partial derivatives
∂g1
∂u
,
∂g2
∂u
,
∂g1
∂v

and
∂g2
∂v
. Consider the the determinant∣∣∣∣∣∣∣∣∣

∂g1 (u, v)

∂u

∂g1 (u, v)

∂v

∂g2 (u, v)

∂u

∂g2 (u, v)

∂v

∣∣∣∣∣∣∣∣∣
where all the partial derivatives are evaluated at the same point (u, v) in the domain of g. It is generally

denoted by
∂(g1, g2)

∂(u, v)
and called the Jacobian of the transformation g(u, v). If a function f(x, y) is integrable

on R then ∫∫
R

f(x, y)dA =

∫∫
W

f ◦ g(u, v)
∣∣∣∣∂(g1, g2)∂(u, v)

∣∣∣∣ dA
Thus the scaling factor for the change of variables is

∣∣∣∣∂(g1, g2)∂(u, v)

∣∣∣∣.
A rigorous proof of this statement requires heavy-duty tools which are not accessible till after a course

in real analysis. The following is essentially an intuitive argument that tries to justify the assertion of the
theorem. To simplify the argument, assume that W is a rectangle {(u, v) : a ≤ u ≤ b and c ≤ v ≤ d}. Divide
[a, b] into n smaller subintervals [u0, u1], [u1, u2], . . . , [un−1, un] of equal length 4u = (b− a)/n where

a = u0 < u1 < u2 < · · · < un−1 < un = b.

Also divide [c, d] into m smaller subintervals [v0, v1], [v1, v2], . . . , [vm−1, vm] of equal length 4v = (d− c)/m
where

c = v0 < v1 < v2 < · · · < vm−1 < vm = d.

The mn rectangles Wij = {(u, v) : ui ≤ u ≤ ui+1 and vj ≤ v ≤ vj+1} partition divide W into smaller
rectangles. Note that Wij has area 4Wij = 4u4v. Since g is one-to-one and onto, their images g(Wij)
divide W into smaller regions, (which need not be rectangles). A typical rectangle Wij with vertices at
A(ui, vj), B(ui+1, vj), C(ui+1, vj+1) and D(ui, vj+1) is mapped onto a region g(Wij) with "corners" at
P (g1(ui, vj), g2(ui, vj)), Q(g1(ui+1, vj), g2(ui+1, vj)), R(g1(ui+1, vj+1), g2(ui+1, vj+1)) and S(g1(ui, vj+1), g2(ui, vj+1)).

Typical rectangle Wij Its image g(Wij)
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The integral of f over R is the limit of the sums
n∑
i=1

m∑
j=1

f (xi, yj)× (Area of g(Wij))

where (xi, yj) is a point in g(Wij). An expression for the area of g(Wij) may be hard to find, therefore we
approximate it with a region whose area is more obvious. To do so, we appeal to the Mean Value Theorem
for a function of one variable. Applying it to g1 and the two points (ui+1, vj), (ui, vj) we conclude that there
is a point (ai, bj) on the line segment joining (ui, vj) and (ui+1, vj) such that

g1(ui+1, vj)− g1(ui, vj) = (ui+1 − ui)
∂g1 (ai, bj)

∂u
= 4u∂g1 (ai, bj)

∂u

Since
∂g1
∂u

is continuous, we approximate
∂g1 (ai, bj)

∂u
with

∂g1 (ui, vj)

∂u
. Therefore

g1(ui+1, vj) ' g1(ui, vj) +4u
∂g1 (ui, vj)

∂u

We show in a similar way that

g2(ui+1, vj) ' g2(ui, vj) +4u
∂g2 (ui, vj)

∂u

g1(ui, vj+1) ' g1(ui, vj) +4v
∂g1 (ui, vj)

∂u

g2(ui, vj+1) ' g1(ui, vj) +4v
∂g1 (ui, vj)

∂u

We now approximate g(Wij) with the parallelogram that has adjacent sides PQ′ and PS′ where

P is the original point with coordinates (g1(ui, vj), g2(ui, vj))

Q′ is a point close to Q that has coordinates
(
g1(ui, vj) +4u

∂g1 (ui, vj)

∂u
, g2(ui, vj) +4u

∂g2 (ui, vj)

∂u

)

S′ is a point close to S that has coordinates
(
g1(ui, vj) +4v

∂g1 (ui, vj)

∂v
, g2(ui, vj) +4v

∂g2 (ui, vj)

∂v

)
Since

→
PQ′ =< 4u∂g1

∂u
,4u∂g2

∂u
> and

→
PS′ =< 4v ∂g1

∂v
,4v ∂g2

∂v
>, the area of the parallelogram is the norm

of the vector

→
PQ′ ×

→
PS′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

4u∂g1
∂u

4u∂g2
∂u

0

4v ∂g1
∂v

4v ∂g2
∂v

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
The norm is

∣∣∣∣∂(g1, g2)∂(u, v)

∣∣∣∣4u4v . As expected, we denote 4u4v by 4Aij . We have to pick a point (θi, αj)
from each region g(Wij). The choice (θi, αj) = g(ui, vj) suffi ces. Therefore the integral is the limit of the
sums

n∑
i=1

m∑
j=1

f ◦ g(ui, vj)
∣∣∣∣∂(g1, g2)∂(u, v)

∣∣∣∣4u4v = n∑
i=1

m∑
j=1

f ◦ g(ui, vj)
∣∣∣∣∂(g1, g2)∂(u, v)

∣∣∣∣4Aij
In other words,∫∫

R

f(x, y)dR = lim
4u,4v→0

n∑
i=1

m∑
j=1

f ◦ g(ui, vj)
∣∣∣∣∂(g1, g2)∂(u, v)

∣∣∣∣4u4v = ∫∫
W

f ◦ g(u, v)
∣∣∣∣∂(g1, g2)∂(u, v)

∣∣∣∣ dA.
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Example 3 To evaluate
∫∫
R

(√
xy + 4

)
dA in Example 1, we look for a mapping g(u, v) that maps a rectangle

with sides parallel to the coordinate axes onto the given region R. To this end fix a point (a, b) in the u -

v plane. We look for a mapping that maps the vertical line line u = a onto the curve y =
a

x
and maps

the horizontal line v = b onto the line y = bx. Thus a point (a, v) on the vertical line is mapped onto the

point with coordinates of the form
(
x,
a

x

)
, (because it must be on the curve y =

a

x
). Similarly, a point (u, b)

on the horizontal line is mapped onto a point of the form (x, bx). It follows that the point (a, b) where the

horizontal line intersects the vertical line is mapped into a point that satisfies the condition (x, bx) =
(
x,
a

x

)
which implies that

bx =
a

x

Solving gives x =
(a
b

) 1
2

= a
1
2 b−

1
2 and bx = (ab)

1
2 . Thus the mapping g we are looking for maps a point

(a, b) onto the point
(
a
1
2 b−

1
2 , (ab)

1
2

)
.

(a,b)

Line u = a

Line v = b

(x,y)

Image of line u = a

Image of line v = b

In general, the mapping sends (u, v) onto
(
u
1
2 v−

1
2 , u

1
2 v

1
2

)
= (x, y), therefore

g(u, v) =
(
u
1
2 v−

1
2 , u

1
2 v

1
2

)
It maps the vertical line u = 1 onto the curve y =

1

x
or simply the curve xy = 1. It maps the vertical line u = 4

onto the curve xy = 4. The horizontal line v = 1 goes into the line y = x and the horizontal line y = 9 goes
into the line y = 9x. Now explain why the points inside the rectangle W = {(u, v) : 1 ≤ u ≤ 4 and 1 ≤ v ≤ 9}
are mapped onto points inside R.

The rectangle W The set R

4



The Jacobian matrix for the transformation g is

∣∣∣∣∂(g1, g2)∂(u, v)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
1
2u
− 1
2 v−

1
2 − 12u

1
2 v−

3
2

1
2u
− 1
2 v

1
2

1
2u

1
2 v−

1
2

∣∣∣∣∣∣∣∣ =
1

4v

Therefore∫∫
R

(√
xy + 4

)
dA =

∫∫
W

1

4v
f ◦ g(u, v)dA = 1

4

∫∫
W

√
u+ 4

v
dA =

1

4

∫ 4

1

∫ 9

1

√
u+ 4

v
dvdu

=
1

4

∫ 4

1

(√
u+ 4

)
[ln v]

9
1 du =

ln 9

4

∫ 4

1

(√
u+ 4

)
du =

3 ln 9

8

[
(u+ 4)

3
2

]4
1

3 ln 9

8

(
8
3
2 − 5 32

)
Example 4 Let R be the region, shown below, enclosed by the lines y = 4x, y = 4x + 3, y = −x + 2 and
y = −x− 3. Its vertices have coordinates (−1.2,−1.8), (−0.6,−2.4), (0.4, 1.6) and (−0.2, 2.2).

­1.2 ­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4

­2

­1

1

2

x

Let f(x, y) = xy + x + y. We wish to determine
∫∫
R

f(x, y)dA. We face a similar problem to that in

Example 3; we have to evaluate 3 different integrals. To avoid this, we introduce a function g that maps
a rectangle with sides that are parallel to the coordinate axes R. An example is a function g that maps a
vertical line u = a onto the line y = 4x + a and maps a horizontal line v = b onto the line y = −x + b.
Thus points (a, v) are mapped onto points of the form (x, 4x+ a) and points (u, b) are mapped onto points
of the form (x,−x+ b). In particular, the point (a, b) is mapped onto a point that satisfies the condition
(x, 4x+ a) = (x,−x+ b). Therefore

4x+ a = −x+ b

Solving gives x = 1
5 (b− a) and −x+b =

1
5 (4b+ a). Thus the point (a, b) is mapped onto

(
1
5 (b− a) ,

1
5 (4b+ a)

)
.

In general, a point (u, v) is mapped onto onto
(
1
5 (v − u) ,

1
5 (4v + u)

)
= (x, y), therefore the map g we want

is defined by
g(u, v) =

(
1
5 (v − u) ,

1
5 (4v + u)

)
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It maps the rectangle W , (shown below), with vertices at (0,−3) , (3,−3) , (3, 2) , (0, 2) onto the set R.

­2 ­1 1 2 3 4

­2

2

4

u

v

Its Jacobian is

∂(g1, g2)

∂(u, v)
=

∣∣∣∣∣∣
− 15

1
5

1
5

4
5

∣∣∣∣∣∣ = −15
Therefore ∫∫

R

f(x, y)dA =

∫∫
W

f ◦ g(u, v)dA

=
1

5

∫ 3

0

∫ 2

−3

(
1
25 (v − u) (4v + u) +

1
5 (v − u) +

1
5 (4v + u)

)
dvdu

=
1

125

∫ 3

0

∫ 2

−3

(
4v2 − 3uv − u2 + 5v

)
dvdu

=
1

125

∫ 3

0

[
4v2 − 3uv − u2 + 5v

]2
−3 du =

1

25

∫ 3

0

[
41

6
+
3u

2
− u2

]2
−3
du

=
1

25

[
41u

6
+
3u2

4
− u3

3

]3
0

=
1

25

(
41

2
+
27

4
− 9
)
=
11

60

Exercise 5

1. In each of the following problems, you are given a parallelogram R enclosed by four lines and a function
f defined on R. You are required to (i) draw the parallelogram, (ii) determine a function g that

maps a rectangle W , with sides parallel to the coordinate axes, onto R, and (iii) evaluate
∫∫
W

f ◦

g(u, v)

∣∣∣∣∂(g1, g2)∂(u, v)

∣∣∣∣ dA.
(a) R enclosed by the lines y = 2x, y = 2x+ 7, y = −x− 1 and y = −x+ 4, and f(x, y) = x+ y2.

(b) R enclosed by the lines y = 4x+2, y = 4x−2, y = −x−2 and y = −x+1, and f(x, y) = x+xy+3y.

(c) R enclosed by the lines y = 3x+1, y = 3x−5, y = −2x+2 and y = −2x−6, and f(x, y) = x2+2y

(d) R enclosed by the lines y = 2x+5, y = 2x−1, y = −2x−3 and y = −2x+5, and f(x, y) = x2−3y2

2. Let R be the region inside the circle x2 + y2 = 9 and outside the circle x2 + y2 = 1. Determine a

mapping that maps a rectangle W onto R then evaluate
∫∫
R

xydA.
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Another Look At Integrals In Polar Coordinates

We change variables from Cartesian to polar coordinates by composing a function f(x, y), where x and y
are Cartesian coordinates, with the function

g(r, θ) = (g1(r, θ), g2(r, θ)) = (r cos θ, r sin θ)

By Theorem 2, to determine the integral of such a function f(x, y) over a set R in the Cartesian plane, we

must look for a the set W that g maps onto R then integrate f ◦ g(r, θ)
∣∣∣∣∂(g1, g2)∂(r, θ)

∣∣∣∣ over W . The Jacobian of
the transformation is∣∣∣∣∣∣∣∣∣

∂(r cos θ)

∂r

∂(r cos θ)

∂θ

∂(r sin θ)

∂r

∂(r sin θ)

∂θ

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣∣∣ = r
(
cos2 θ + sin2 θ

)
= r

Therefore ∫∫
R

f(x, y)dA =

∫∫
W

f(r cos θ, r sin θ)

∣∣∣∣∂(g1, g2)∂(r, θ)

∣∣∣∣ dA = ∫∫
W

f(r cos θ, r sin θ)rdA. (1)
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