

Changing Variables in a Double Integral

Changing variables, (i.e. integrating by substitution), in a definite integral

$$\int_a^b f(x)dx$$

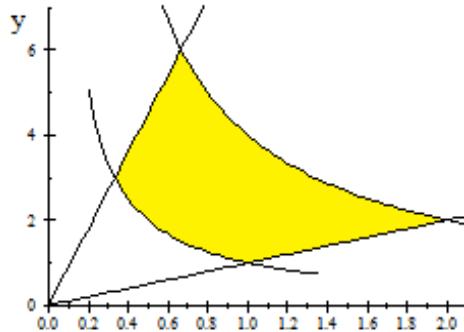
of a function f of one variable boiled down to determining a suitable function g and an interval $[c, d]$ that g maps onto $[a, b]$ then integrate $\int_c^d f \circ g(u)g'(u)du$ instead of $\int_a^b f(x)dx$. We called $g'(u)$ a scaling factor for the change of variable. One had to choose g such that $f \circ g(u)g'(u)$ has an antiderivative that could be determined by inspection.

We follow similar steps to change variables in a function of two variables. More precisely, given an integral

$$\iint_R f(x, y)dA,$$

(most probably the type that eludes our attempts to evaluate by iteration), we look for a suitable function g and a set W that g maps onto R . Then, instead of integrating f over R , we integrate $(f \circ g) \times (\text{a scaling factor})$ over the W . We will soon give an expression for the scaling factor in terms of g , but before doing that, here is an example:

Example 1 Let R be the region in the first quadrant enclosed by the curves $xy = 1$, $xy = 4$ and the two lines $y = x$ and $y = 9x$. The "corners" of R have coordinates $(\frac{1}{3}, 3)$, $(1, 1)$, $(2, 2)$ and $(\frac{2}{3}, 6)$.



The set R

Let $f(x, y) = \sqrt{xy + 4}$. Say we decide to evaluate $\iint_R f(x, y)dA$ by iteration. If we fix x we get a function

of one variable y but, this time, its domain depends more elaborately on where x is in the interval $[\frac{1}{3}, 2]$. If $\frac{1}{3} \leq x \leq \frac{2}{3}$, the domain is $[\frac{1}{x}, 9x]$. If $\frac{2}{3} \leq x \leq 1$, the domain is $[\frac{1}{x}, \frac{4}{x}]$, and if $1 \leq x \leq 2$, the domain is $[\frac{4}{x}, \frac{4}{x}]$. Therefore we have to evaluate three separate integrals which are

$$\int_{\frac{1}{3}}^{\frac{2}{3}} \int_{\frac{1}{x}}^{9x} \left(\sqrt{xy + 4} \right) dy dx, \quad \int_{\frac{2}{3}}^1 \int_{\frac{1}{x}}^{\frac{4}{x}} \left(\sqrt{xy + 4} \right) dy dx, \quad \text{and} \quad \int_1^2 \int_x^{\frac{4}{x}} \left(\sqrt{xy + 4} \right) dy dx$$

It turns out that none of these three integrals is a "walk-over". For example,

$$\int_{\frac{1}{3}}^{\frac{2}{3}} \int_{\frac{1}{x}}^{9x} \left(\sqrt{xy + 4} \right) dy dx = \int_{\frac{1}{3}}^{\frac{2}{3}} \left(\frac{2}{3} \left[\frac{1}{x} (xy + 4)^{3/2} \right]_{\frac{1}{x}}^{9x} \right) dx = \frac{2}{3} \int_{\frac{1}{3}}^{\frac{2}{3}} \left(\frac{(9x^2 + 4)^{3/2}}{x} - \frac{5^{3/2}}{x} \right) dx$$

Faced with such challenging integrals, it pays to look for a mapping g that maps a relatively simple set W onto R and is such that $f \circ g$ has a simpler formula. Then, instead of integrating f over R , we integrate

$$f \circ g \times (\text{a scaling factor})$$

over W . We show ahead that the mapping $g(u, v) = (u^{\frac{1}{2}}v^{-\frac{1}{2}}, u^{\frac{1}{2}}v^{\frac{1}{2}})$, (we explain how to get it), maps the rectangle $\{(u, v) : 1 \leq u \leq 4 \text{ and } 1 \leq v \leq 9\}$ onto R . It is easy to verify that $f \circ g(u, v) = \sqrt{u+4}$. Therefore, instead of integrating $f(x, y)$ over R , we integrate the simpler function

$$f \circ g \times (\text{a scaling factor}) = (\sqrt{u+4}) \times (\text{a scaling factor})$$

over W . This turns out to be a much easier task.

The scaling Factor

Theorem 2 Let R and W be subsets of \mathbb{R}^2 , $g(u, v) = (g_1(u, v), g_2(u, v))$ be a one-to-one function that maps W onto R and has continuous partial derivatives $\frac{\partial g_1}{\partial u}$, $\frac{\partial g_2}{\partial u}$, $\frac{\partial g_1}{\partial v}$ and $\frac{\partial g_2}{\partial v}$. Consider the the determinant

$$\begin{vmatrix} \frac{\partial g_1(u, v)}{\partial u} & \frac{\partial g_1(u, v)}{\partial v} \\ \frac{\partial g_2(u, v)}{\partial u} & \frac{\partial g_2(u, v)}{\partial v} \end{vmatrix}$$

where all the partial derivatives are evaluated at the same point (u, v) in the domain of g . It is generally denoted by $\frac{\partial(g_1, g_2)}{\partial(u, v)}$ and called the Jacobian of the transformation $g(u, v)$. If a function $f(x, y)$ is integrable on R then

$$\iint_R f(x, y) dA = \iint_W f \circ g(u, v) \left| \frac{\partial(g_1, g_2)}{\partial(u, v)} \right| dA$$

Thus the scaling factor for the change of variables is $\left| \frac{\partial(g_1, g_2)}{\partial(u, v)} \right|$.

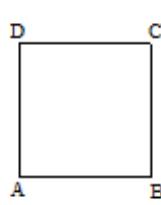
A rigorous proof of this statement requires heavy-duty tools which are not accessible till after a course in real analysis. The following is essentially an intuitive argument that tries to justify the assertion of the theorem. To simplify the argument, assume that W is a rectangle $\{(u, v) : a \leq u \leq b \text{ and } c \leq v \leq d\}$. Divide $[a, b]$ into n smaller subintervals $[u_0, u_1], [u_1, u_2], \dots, [u_{n-1}, u_n]$ of equal length $\Delta u = (b - a)/n$ where

$$a = u_0 < u_1 < u_2 < \dots < u_{n-1} < u_n = b.$$

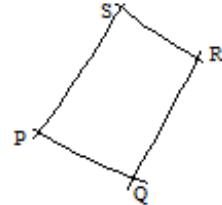
Also divide $[c, d]$ into m smaller subintervals $[v_0, v_1], [v_1, v_2], \dots, [v_{m-1}, v_m]$ of equal length $\Delta v = (d - c)/m$ where

$$c = v_0 < v_1 < v_2 < \dots < v_{m-1} < v_m = d.$$

The mn rectangles $W_{ij} = \{(u, v) : u_i \leq u \leq u_{i+1} \text{ and } v_j \leq v \leq v_{j+1}\}$ partition divide W into smaller rectangles. Note that W_{ij} has area $\Delta W_{ij} = \Delta u \Delta v$. Since g is one-to-one and onto, their images $g(W_{ij})$ divide R into smaller regions, (which need not be rectangles). A typical rectangle W_{ij} with vertices at $A(u_i, v_j), B(u_{i+1}, v_j), C(u_{i+1}, v_{j+1})$ and $D(u_i, v_{j+1})$ is mapped onto a region $g(W_{ij})$ with "corners" at $P(g_1(u_i, v_j), g_2(u_i, v_j)), Q(g_1(u_{i+1}, v_j), g_2(u_{i+1}, v_j)), R(g_1(u_{i+1}, v_{j+1}), g_2(u_{i+1}, v_{j+1}))$ and $S(g_1(u_i, v_{j+1}), g_2(u_i, v_{j+1}))$.



Typical rectangle W_{ij}



Its image $g(W_{ij})$

The integral of f over R is the limit of the sums

$$\sum_{i=1}^n \sum_{j=1}^m f(x_i, y_j) \times (\text{Area of } g(W_{ij}))$$

where (x_i, y_j) is a point in $g(W_{ij})$. An expression for the area of $g(W_{ij})$ may be hard to find, therefore we approximate it with a region whose area is more obvious. To do so, we appeal to the Mean Value Theorem for a function of one variable. Applying it to g_1 and the two points (u_{i+1}, v_j) , (u_i, v_j) we conclude that there is a point (a_i, b_j) on the line segment joining (u_i, v_j) and (u_{i+1}, v_j) such that

$$g_1(u_{i+1}, v_j) - g_1(u_i, v_j) = (u_{i+1} - u_i) \frac{\partial g_1(a_i, b_j)}{\partial u} = \Delta u \frac{\partial g_1(a_i, b_j)}{\partial u}$$

Since $\frac{\partial g_1}{\partial u}$ is continuous, we approximate $\frac{\partial g_1(a_i, b_j)}{\partial u}$ with $\frac{\partial g_1(u_i, v_j)}{\partial u}$. Therefore

$$g_1(u_{i+1}, v_j) \simeq g_1(u_i, v_j) + \Delta u \frac{\partial g_1(u_i, v_j)}{\partial u}$$

We show in a similar way that

$$g_2(u_{i+1}, v_j) \simeq g_2(u_i, v_j) + \Delta u \frac{\partial g_2(u_i, v_j)}{\partial u}$$

$$g_1(u_i, v_{j+1}) \simeq g_1(u_i, v_j) + \Delta v \frac{\partial g_1(u_i, v_j)}{\partial u}$$

$$g_2(u_i, v_{j+1}) \simeq g_2(u_i, v_j) + \Delta v \frac{\partial g_2(u_i, v_j)}{\partial u}$$

We now approximate $g(W_{ij})$ with the parallelogram that has adjacent sides PQ' and PS' where

P is the original point with coordinates $(g_1(u_i, v_j), g_2(u_i, v_j))$

Q' is a point close to Q that has coordinates $\left(g_1(u_i, v_j) + \Delta u \frac{\partial g_1(u_i, v_j)}{\partial u}, g_2(u_i, v_j) + \Delta u \frac{\partial g_2(u_i, v_j)}{\partial u} \right)$

S' is a point close to S that has coordinates $\left(g_1(u_i, v_j) + \Delta v \frac{\partial g_1(u_i, v_j)}{\partial v}, g_2(u_i, v_j) + \Delta v \frac{\partial g_2(u_i, v_j)}{\partial v} \right)$

Since $\vec{PQ}' = \langle \Delta u \frac{\partial g_1}{\partial u}, \Delta u \frac{\partial g_2}{\partial u} \rangle$ and $\vec{PS}' = \langle \Delta v \frac{\partial g_1}{\partial v}, \Delta v \frac{\partial g_2}{\partial v} \rangle$, the area of the parallelogram is the norm of the vector

$$\vec{PQ}' \times \vec{PS}' = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \Delta u \frac{\partial g_1}{\partial u} & \Delta u \frac{\partial g_2}{\partial u} & 0 \\ \Delta v \frac{\partial g_1}{\partial v} & \Delta v \frac{\partial g_2}{\partial v} & 0 \end{vmatrix}$$

The norm is $\left| \frac{\partial(g_1, g_2)}{\partial(u, v)} \right| \Delta u \Delta v$. As expected, we denote $\Delta u \Delta v$ by ΔA_{ij} . We have to pick a point (θ_i, α_j) from each region $g(W_{ij})$. The choice $(\theta_i, \alpha_j) = g(u_i, v_j)$ suffices. Therefore the integral is the limit of the sums

$$\sum_{i=1}^n \sum_{j=1}^m f \circ g(u_i, v_j) \left| \frac{\partial(g_1, g_2)}{\partial(u, v)} \right| \Delta u \Delta v = \sum_{i=1}^n \sum_{j=1}^m f \circ g(u_i, v_j) \left| \frac{\partial(g_1, g_2)}{\partial(u, v)} \right| \Delta A_{ij}$$

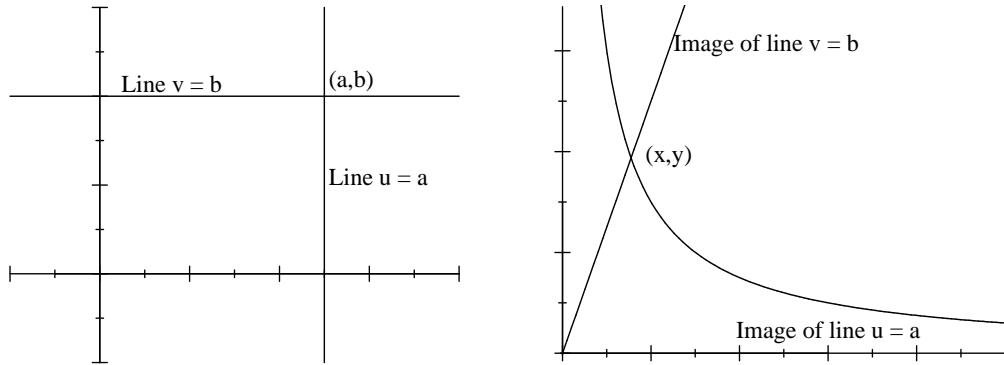
In other words,

$$\iint_R f(x, y) dR = \lim_{\Delta u, \Delta v \rightarrow 0} \sum_{i=1}^n \sum_{j=1}^m f \circ g(u_i, v_j) \left| \frac{\partial(g_1, g_2)}{\partial(u, v)} \right| \Delta u \Delta v = \iint_W f \circ g(u, v) \left| \frac{\partial(g_1, g_2)}{\partial(u, v)} \right| dA.$$

Example 3 To evaluate $\iint_R (\sqrt{xy+4}) dA$ in Example 1, we look for a mapping $g(u, v)$ that maps a rectangle with sides parallel to the coordinate axes onto the given region R . To this end fix a point (a, b) in the u - v plane. We look for a mapping that maps the vertical line $u = a$ onto the curve $y = \frac{a}{x}$ and maps the horizontal line $v = b$ onto the line $y = bx$. Thus a point (a, v) on the vertical line is mapped onto the point with coordinates of the form $\left(x, \frac{a}{x}\right)$, (because it must be on the curve $y = \frac{a}{x}$). Similarly, a point (u, b) on the horizontal line is mapped onto a point of the form (x, bx) . It follows that the point (a, b) where the horizontal line intersects the vertical line is mapped into a point that satisfies the condition $(x, bx) = \left(x, \frac{a}{x}\right)$ which implies that

$$bx = \frac{a}{x}$$

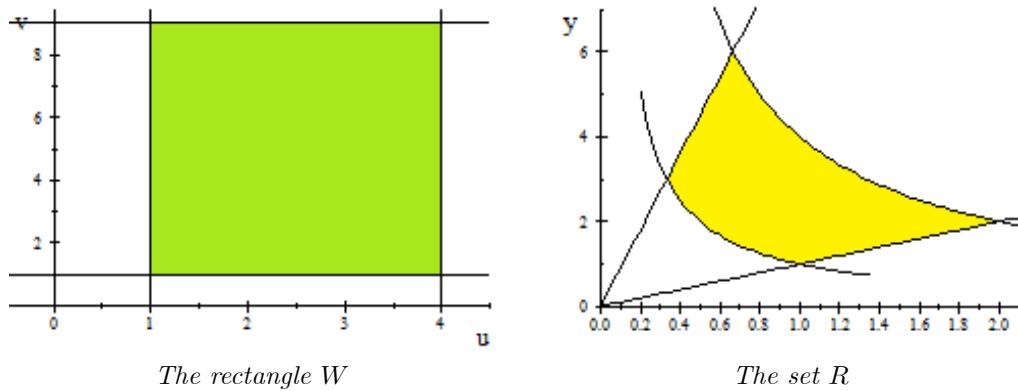
Solving gives $x = \left(\frac{a}{b}\right)^{\frac{1}{2}} = a^{\frac{1}{2}}b^{-\frac{1}{2}}$ and $bx = (ab)^{\frac{1}{2}}$. Thus the mapping g we are looking for maps a point (a, b) onto the point $\left(a^{\frac{1}{2}}b^{-\frac{1}{2}}, (ab)^{\frac{1}{2}}\right)$.



In general, the mapping sends (u, v) onto $\left(u^{\frac{1}{2}}v^{-\frac{1}{2}}, u^{\frac{1}{2}}v^{\frac{1}{2}}\right) = (x, y)$, therefore

$$g(u, v) = \left(u^{\frac{1}{2}}v^{-\frac{1}{2}}, u^{\frac{1}{2}}v^{\frac{1}{2}}\right)$$

It maps the vertical line $u = 1$ onto the curve $y = \frac{1}{x}$ or simply the curve $xy = 1$. It maps the vertical line $u = 4$ onto the curve $xy = 4$. The horizontal line $v = 1$ goes into the line $y = x$ and the horizontal line $v = 9$ goes into the line $y = 9x$. Now explain why the points inside the rectangle $W = \{(u, v) : 1 \leq u \leq 4 \text{ and } 1 \leq v \leq 9\}$ are mapped onto points inside R .



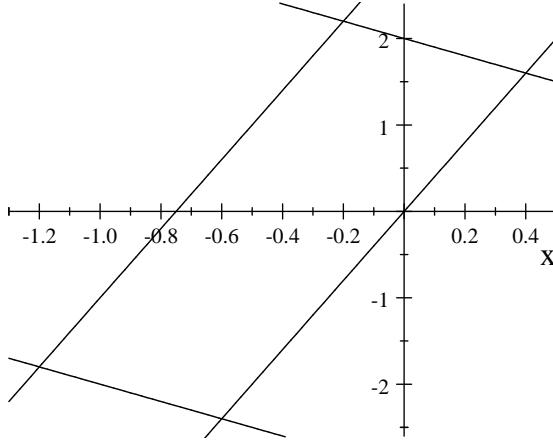
The Jacobian matrix for the transformation g is

$$\left| \frac{\partial(g_1, g_2)}{\partial(u, v)} \right| = \begin{vmatrix} \frac{1}{2}u^{-\frac{1}{2}}v^{-\frac{1}{2}} & -\frac{1}{2}u^{\frac{1}{2}}v^{-\frac{3}{2}} \\ \frac{1}{2}u^{-\frac{1}{2}}v^{\frac{1}{2}} & \frac{1}{2}u^{\frac{1}{2}}v^{-\frac{1}{2}} \end{vmatrix} = \frac{1}{4v}$$

Therefore

$$\begin{aligned} \iint_R (\sqrt{xy+4}) dA &= \iint_W \frac{1}{4v} f \circ g(u, v) dA = \frac{1}{4} \iint_W \frac{\sqrt{u+4}}{v} dA = \frac{1}{4} \int_1^4 \int_1^9 \frac{\sqrt{u+4}}{v} dv du \\ &= \frac{1}{4} \int_1^4 (\sqrt{u+4}) [\ln v]_1^9 du = \frac{\ln 9}{4} \int_1^4 (\sqrt{u+4}) du = \frac{3 \ln 9}{8} \left[(u+4)^{\frac{3}{2}} \right]_1^4 \\ &= \frac{3 \ln 9}{8} (8^{\frac{3}{2}} - 5^{\frac{3}{2}}) \end{aligned}$$

Example 4 Let R be the region, shown below, enclosed by the lines $y = 4x$, $y = 4x + 3$, $y = -x + 2$ and $y = -x - 3$. Its vertices have coordinates $(-1.2, -1.8)$, $(-0.6, -2.4)$, $(0.4, 1.6)$ and $(-0.2, 2.2)$.



Let $f(x, y) = xy + x + y$. We wish to determine $\iint_R f(x, y) dA$. We face a similar problem to that in

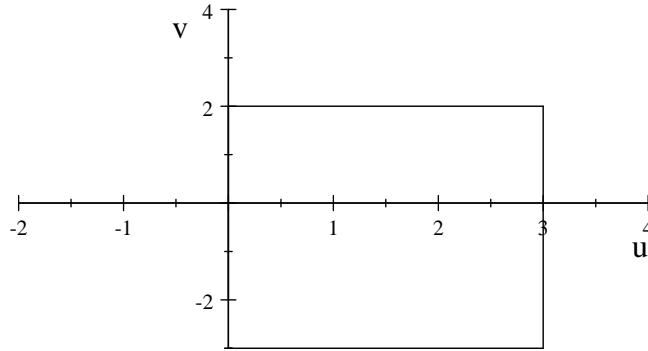
Example 3; we have to evaluate 3 different integrals. To avoid this, we introduce a function g that maps a rectangle with sides that are parallel to the coordinate axes R . An example is a function g that maps a vertical line $u = a$ onto the line $y = 4x + a$ and maps a horizontal line $v = b$ onto the line $y = -x + b$. Thus points (a, v) are mapped onto points of the form $(x, 4x + a)$ and points (u, b) are mapped onto points of the form $(x, -x + b)$. In particular, the point (a, b) is mapped onto a point that satisfies the condition $(x, 4x + a) = (x, -x + b)$. Therefore

$$4x + a = -x + b$$

Solving gives $x = \frac{1}{5}(b - a)$ and $-x + b = \frac{1}{5}(4b + a)$. Thus the point (a, b) is mapped onto $(\frac{1}{5}(b - a), \frac{1}{5}(4b + a))$. In general, a point (u, v) is mapped onto $(\frac{1}{5}(v - u), \frac{1}{5}(4v + u)) = (x, y)$, therefore the map g we want is defined by

$$g(u, v) = \left(\frac{1}{5}(v - u), \frac{1}{5}(4v + u) \right)$$

It maps the rectangle W , (shown below), with vertices at $(0, -3), (3, -3), (3, 2), (0, 2)$ onto the set R .



Its Jacobian is

$$\frac{\partial(g_1, g_2)}{\partial(u, v)} = \begin{vmatrix} -\frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{4}{5} \end{vmatrix} = -\frac{1}{5}$$

Therefore

$$\begin{aligned} \iint_R f(x, y) dA &= \iint_W f \circ g(u, v) dA \\ &= \frac{1}{5} \int_0^3 \int_{-3}^2 \left(\frac{1}{25} (v-u)(4v+u) + \frac{1}{5}(v-u) + \frac{1}{5}(4v+u) \right) dv du \\ &= \frac{1}{125} \int_0^3 \int_{-3}^2 (4v^2 - 3uv - u^2 + 5v) dv du \\ &= \frac{1}{125} \int_0^3 [4v^2 - 3uv - u^2 + 5v] \Big|_{-3}^2 du = \frac{1}{25} \int_0^3 \left[\frac{41}{6} + \frac{3u}{2} - u^2 \right] \Big|_{-3}^2 du \\ &= \frac{1}{25} \left[\frac{41u}{6} + \frac{3u^2}{4} - \frac{u^3}{3} \right] \Big|_0^2 = \frac{1}{25} \left(\frac{41}{2} + \frac{27}{4} - 9 \right) = \frac{11}{60} \end{aligned}$$

Exercise 5

1. In each of the following problems, you are given a parallelogram R enclosed by four lines and a function f defined on R . You are required to (i) draw the parallelogram, (ii) determine a function g that maps a rectangle W , with sides parallel to the coordinate axes, onto R , and (iii) evaluate $\iint_W f \circ g(u, v) \left| \frac{\partial(g_1, g_2)}{\partial(u, v)} \right| dA$.

(a) R enclosed by the lines $y = 2x$, $y = 2x + 7$, $y = -x - 1$ and $y = -x + 4$, and $f(x, y) = x + y^2$.
 (b) R enclosed by the lines $y = 4x + 2$, $y = 4x - 2$, $y = -x - 2$ and $y = -x + 1$, and $f(x, y) = x + xy + 3y$.
 (c) R enclosed by the lines $y = 3x + 1$, $y = 3x - 5$, $y = -2x + 2$ and $y = -2x - 6$, and $f(x, y) = x^2 + 2y$.
 (d) R enclosed by the lines $y = 2x + 5$, $y = 2x - 1$, $y = -2x - 3$ and $y = -2x + 5$, and $f(x, y) = x^2 - 3y^2$.

2. Let R be the region inside the circle $x^2 + y^2 = 9$ and outside the circle $x^2 + y^2 = 1$. Determine a mapping that maps a rectangle W onto R then evaluate $\iint_R xy dA$.

Another Look At Integrals In Polar Coordinates

We change variables from Cartesian to polar coordinates by composing a function $f(x, y)$, where x and y are Cartesian coordinates, with the function

$$g(r, \theta) = (g_1(r, \theta), g_2(r, \theta)) = (r \cos \theta, r \sin \theta)$$

By Theorem 2, to determine the integral of such a function $f(x, y)$ over a set R in the Cartesian plane, we must look for a the set W that g maps onto R then integrate $f \circ g(r, \theta) \left| \frac{\partial(g_1, g_2)}{\partial(r, \theta)} \right|$ over W . The Jacobian of the transformation is

$$\begin{vmatrix} \frac{\partial(r \cos \theta)}{\partial r} & \frac{\partial(r \cos \theta)}{\partial \theta} \\ \frac{\partial(r \sin \theta)}{\partial r} & \frac{\partial(r \sin \theta)}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r (\cos^2 \theta + \sin^2 \theta) = r$$

Therefore

$$\iint_R f(x, y) dA = \iint_W f(r \cos \theta, r \sin \theta) \left| \frac{\partial(g_1, g_2)}{\partial(r, \theta)} \right| dA = \iint_W f(r \cos \theta, r \sin \theta) r dA. \quad (1)$$