
Evaluating a Double Integral by Iterations

For a continuous function f and regions R enclosed by continuous curves, we may calculate the double

integral
∫∫
R

f(x, y)dA using what one may call "partial integration" and thus avoid the process of forming

Riemann sums. The process involves keeping one of the two variables constant, (we did this when computing
partial derivatives), and integrate the resulting function of one variable. We illustrate the process using the
integral of f(x, y) = 25+xy over the rectangle R with vertices at (0,−2, 0), (5,−2, 0), (5, 4, 0), (0, 4, 0) which
we evaluated using the limits of sums. If we keep x constant, (the constant value must be between 0 and 5,
else there would be no numbers y such that (x, y) ∈ R), we get a function y → xy + 25 of one variable y
with domain [−2, 4]. Its integral over [−2, 4] is∫ 4

−2
(25 + xy) dy =

[
10y + 1

2xy
2
]4
−2 = (100 + 8x)− (−50 + 2x) = 150 + 6x

We now have a new a function u(x) = 150 + 6x of one variable x with domain [0, 5]. Its integral over its
domain [0, 5] is ∫ 5

0

(150 + 6x) dx =
[
150x+ 3x2

]5
0
= 825

which is the value of the double integral
∫∫
R

f(x, y)dA.

We could have kept y constant, (the constant value must be between −2 and 4), to get a function
x→ xy + 25 of one variable x with domain [0, 5]. Its integral over this set is∫ 5

0

(xy + 25) dx =
[
25x+ 1

2yx
2
]5
0
= 125 + 25

2 y

which is a function v(y) = 125 + 25
2 y of one variable y with domain [−2, 4]. When we integrate it over this

set and the result is∫ 4

−2

(
125 + 25

2 y
)
dy =

[
125y + 25

4 y
2
]4
−2 = (500 + 100)− (−250 + 25) = 825.

Since u(x) =
∫ 4

−2
(25 + xy) dy, the integral of u over [0, 5] is denoted by

∫ 5

0

(∫ 4

−2
(25 + xy) dy

)
dx or simply

∫ 5

0

∫ 4

−2
(25 + xy) dydx

and it is called an iterated integral of f over R. Likewise, v(y) =
∫ 5

0

(xy + 25) dx, therefore its integral over

[−2, 4] is denoted by∫ 4

−2

(∫ 5

0

(xy + 25) dx

)
dy or simply

∫ 4

−2

∫ 5

0

(xy + 25) dxdy

and is also called an iterated integral of f over R. Note that in an iterated integral, the order of the symbols
dx and dy matters. When they appear as dydx the instruction is to keep x fixed and integrate a function
of one variable y with respect to y. The result will be a function of one variable x which you would then
proceed to integrate with respect to x. When they appear as dxdy, we first fix y.

We verified directly that the two iterated integrals
∫ 5

0

∫ 4

−2
(25 + xy) dydx and

∫ 4

−2

∫ 5

0

(xy + 25) dxdy are

equal to the Riemann integral of f over R. In general, if f is a continuous function and R is a set enclosed
by continuous curves then the Riemann integral of f over R is equal to any one of its iterated integral over
R. This statement is called Fubini’s theorem.
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Example 1 Let f(x, y) = x2y+y3−3x and R be the rectangle with vertices at (0, 0), (4, 0), (4, 6) and (0, 6).

0 1 2 3 4
0

2

4

6

R

If we keep the first variable x constant, we get a function of one variable y with domain [0, 6]. Its integral is

u(x) =

∫ 6

0

(
x2y + y3 − 3x

)
dy =

[
1
2x

2y2 + 1
4y
4 − 3xy

]6
0
= 18x2 − 18x+ 324

The domain of u is [0, 4], because x can be assigned any constant value in the interval [0, 4], and its integral
on this interval is∫ 4

0

(
18x2 − 18x+ 324

)
dx =

[
6x3 − 9x2 + 324x

]4
0
= 384− 144 + 1296 = 1536

By Fubini’s theorem, ∫∫
R

(
x2y + y3 − 3x

)
dA =

∫ 4

0

∫ 6

0

(
x2y + y3 − 3x

)
dydx = 1536

The other iterated integral is∫ 6

0

∫ 4

0

(
x2y + y3 − 3x

)
dxdy =

∫ 6

0

([
1
3x

3y + xy3 − 3
2x

2
]4
0

)
dy =

∫ 6

0

(
64
3 y + 4y

3 − 24
)
dy

=
[
32
3 y

2 + y4 − 24y
]6
0
= 384 + 1296− 144 = 1536

The region R does not have to be a rectangle:

Example 2 Let f(x, y) = 12+ x− y and R be the triangle enclosed by lines y = 2x+1, y = −1 and x = 2.

­1 1 2
­1

1

2

3

4

5

R

Its vertices are at (−1,−1), (2,−1) and (2, 5). Let f(x, y) = 12 + x − y. If we fix x to a constant value
between −1 and 2, we get a function of one variable y with domain [−1, 2x+ 1]. Its integral over the interval
is

u(x) =

∫ 2x+1

−2
(12 + x− y) dy =

[
12y + xy − 1

2y
2
]2x+1
−1

= 12 (2x+ 1) + x (2x+ 1)− 1
4

(
4x2 + 4x+ 1

)
−
(
−12− x− 1

2

)
= 24x+ 24
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The integral of u(x) = 24x+ 24 over [−1, 2] is∫ 2

−1
(24x+ 24) dx =

[
12x2 + 24x

]2
−1 = 48 + 48− 12 + 24 = 108

Thus ∫∫
R

(12 + x− y) dA =
∫ 2

−1

∫ 2x+1

−2
(12 + x− y) dydx = 108

Say you choose to keep y, (instead of x), constant. The constant value of y must be between −1 and 5. You
get a function of one variable with domain

[
1
2 (y − 1), 2

]
. Its integral over this set is∫ 2

1
2 (y−1)

(12 + x− y) dx =
[
12x+ 1

2x
2 − xy

]2
1
2 (y−1)

= 2x+ 2− 2y −
[
12 · 12 (y − 1) +

1
8 (y − 1)

2 − 1
2 (y − 1)y

]
=

255

8
− 33y

4
+
3y2

8

The integral of v(y) =
255

8
− 33y

4
+
3y2

8
over [−1, 5] is

∫ 5

−1

(
255

8
− 33y

4
+
3y2

8

)
dy =

[
255y

8
− 33y

2

8
+
y3

8

]5
−1

=
1275− 825 + 125

8
− −255− 33− 1

8
=
864

8
= 108

Example 3 Let R be the region in the plane enclosed by the curve y =
√
x, the x-axis and the line x = 4.

0 1 2 3 4
0

1

2

R

Let f(x, y) = 2x + y + 3xy. To evaluate its iterated integrals over R, we observe first, that if we choose a
fixed value of x between 0 and 4, (we cannot choose values of x outside this interval because there would be
no numbers y such that (x, y) ∈ R), we get a function of one variable y with domain [0,

√
x]. Its integral

over this set is

u(x) =

∫ √x
0

(2x+ y + 3xy) dy =
[
2xy + 1

2y
2 + 3

2xy
2
]√x
0
= 2x3/2 + 1

2x+
3
2x

2

The domain of u is the interval [0, 4] and∫ 4

0

u(x)dx =

∫ 4

0

(
2x3/2 + 1

2x+
3
2x

2
)
dx =

[
4
5x

5/2 + 1
4x

2 + 1
2x

3
]4
0
=
308

5
.

By Fubini’s theorem, ∫∫
R

(2x+ y + 3xy) dA =

∫ 4

0

∫ √x
0

(2x+ y + 3xy) dydx =
308

5

3



To evaluate the other iterated integral, note that we have to choose a fixed value of y between 0 and 2. Then
we get a function of one variable x with domain

[
y2, 4

]
and its integral over the interval is

v(y) =

∫ 4

y2
(2x+ y + 3xy) dx =

[
x2 + xy + 3

2x
2y
]4
y2
= 16 + 28y − y4 − y3 − 3

2y
5

The domain of v is the interval [0, 2] and its integral over this interval is∫ 2

0

(
16 + 28y − y4 − y3 − 3

2y
5
)
dy =

[
16y + 14y2 − 1

5y
5 − 1

4y
4 − 1

4y
6
]2
0
=
308

5
.

Example 4 Let R be the set in the first quadrant enclosed by the parabola y = x2, the line y = −2x+3 and
the x-axis. The parabola intersects the line, (in the first quadrant), at (1, 1).

­0.5 0.5 1.0 1.5 2.0­0.2

0.2
0.4
0.6
0.8
1.0
1.2

Say we have to evaluate the integral of f(x, y) = 4x + y over R. If we choose to fix x and vary y, we must
evaluate two different integrals because: (i) when 0 ≤ x ≤ 1, y varies from 0 to x2, and (ii) when 1 ≤ x ≤ 3

2 ,
y varies from 0 to 3− 2x. Thus∫∫

R

(4x+ y) dA =

∫ 1

0

∫ x2

0

(4x+ y) dydx+

∫ 1.5

1

∫ 3−2x

0

(4x+ y) dydx

=

∫ 1

0

([
4xy + 1

2y
2
]x2
0

)
dx+

∫ 1.5

1

([
4xy + 1

2y
2
]3−2x
0

)
dx

=

∫ 1

0

(
4x3 + 1

2x
4
)
dx+

∫ 1.5

1

(
9
2 + 6x− 6x

2
)
dx

=

[
x4 +

x5

10

]1
0

+

[
9

2
x+ 3x2 − 2x3

]1.5
1

=
47

20

However, if we choose to keep y fixed and vary x, we end up with one integral, since x varies from
√
y to

1
2 (3− y). Indeed∫∫

R

(4x+ y) dA =

∫ 1

0

∫ 1
2 (3−y)

√
y

(4x+ y) dxdy =

∫ 1

0

([
2x2 + xy

] 1
2 (3−y)√
y

)
dy

=

∫ 1

0

(
9

2
− 7y
2
− y3/2

)
dy =

[
9y

2
− 7y

2

4
− 2
5
y5/2

]1
0

=
47

20

Exercise 5
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1. Evaluate each iterated integral

(a)
∫ 1

0

∫ 2

−1

(
x2 + 3xy − y3

)
dxdy (b)

∫ 2

1

∫ 5

3

(
3

x
+ 6y − 4x

y

)
dydx

(c)
∫ 2

1

∫ 1/2

0

(sinπy + 6y − cos 2x) dydx (d)
∫ 2

1

∫ 1

0

(
e2x + 2xy

)
dxdy

(e)
∫ 2

1

∫ x

0

(ey + x+ y) dydx (f)
∫ 3

0

∫ x

0

(
8x− 4y + x2y3

)
dydx

(g)
∫ 4

0

∫ 1
2y

0

(xey − 4xy + 1) dxdy (h)
∫ 4

0

∫ 2y

−y
(x+ y − 6xy) dxdy

2. Consider the iterated integral
∫ 1

0

∫ 2

−1

(
x2 + 3xy − y3

)
dxdy in question 1 (a) above. Note that we keep y

constant between 0 and 1 then integrate a function of one variable x on the interval [−1, 2]. Therefore
we integrate

(
x2 + 3xy − y3

)
over a region consisting of all values of x between −1 and 2 and all

values of y between 0 and 1. The region must be the rectangle with vertices at (−1, 0), (2, 0), (2, 1)

and (−1, 1). In the case of
∫ 3

0

∫ x

0

(
8x− 4y + x2y3

)
dydx in part (f) of the same question, we keep x

constant between 0 and 3 and integrate the resulting function of one variable y over the interval [0, x].
Therefore we integrate

(
x2 + 3xy − y3

)
over a region consisting of all values of x between 0 and 3 and

all values of y between the line y = 0 and the line y = x. The region must be the triangle with vertices
at (0, 0), (3, 0) and (3, 3). Determine the region of integration in parts (d), (e) and (h).

3. Let f(x, y) = 4x − 6xy and R be the region in the first quadrant enclosed by the line y = x and the

curve y =
√
x. Show that

∫∫
R

f(x, y)dA =
1

60
.

4. Determine
∫∫
R

(x+ 4xy) dA where R is the region in the first quadrant enclosed by the parabola y = x2,

the line x = 2, and the x-axis.

5. Determine
∫∫
R

(
x2 + 4xy − y2

)
dA where R is the region enclosed by the curve y = x1/2, the line y = 2,

and the y-axis.

6. Evaluate the integral of f(x, y) = x + 2y over the set R enclosed by the parabola y = 3x − x2 and the
line y = 2x.

7. Let R be a region in the x - y plane and f be the constant function f(x, y) = 1. Show that
∫∫
R

f(x, y)dA

is the area of the region R.

Double Integral in Polar Coordinates

Let a, b be nonnegative real numbers with a < b, and α, β be real numbers such that α < β and β−α ≤ 2π.
The set {(r, θ) : a ≤ r ≤ b and α ≤ θ ≤ β} is called a polar rectangle. In the figure below, the polar
rectangles {(r, θ) : 1 ≤ r ≤ 2.5 and 0.5 ≤ θ ≤ 1.3} and {(r, θ) : 0 ≤ r ≤ 3 and 2.2 ≤ θ ≤ 4.0} are shaded.
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A polar rectangle {(r, θ) : a ≤ r ≤ b and α ≤ θ ≤ β} may be partitioned into smaller polar rectangles by
partitioning the intervals [a, b] and [α, β] into smaller subintervals. In the figure below, the polar rectangle
{(r, θ) : 1 ≤ r ≤ 4 and 0 ≤ θ ≤ 1.8} is partitioned into 21 smaller polar rectangles by partitioning [1, 4] into
subintervals [1, 2], [2, 3] and [3, 4], and partitioning [0, 1.8] into subintervals [0, 0.3], [0.3, 0.5], [0.5, 0.8], [0.8, 1],
[1, 1.3], [1.3, 1.6] and [1.6, 1.8] .

A polar rectangle partitioned into smaller polar rectangles

Let W = {(r, θ) : a ≤ r ≤ b and α ≤ θ ≤ β} be a polar rectangle and f(x, y) a function defined on W
whose formula is expressed in Cartesian coordinates x and y. The relation between (x, y) and (r, θ) is
x = r cos θ and y = r sin θ. Partition the interval [a, b] into smaller subintervals [r0, r1], [r1, r2], . . . , [rn−1, rn]
where a = r0 < r1 < · · · < rn−1 < rn = b, and partition [α, β] into smaller subintervals [θ0, θ1], [θ1, θ2],
. . . , [θm−1, θm] with α = θ0 < θ1 < θ2 < · · · < θm−1 < θm = β. Let 4ri = (ri+1 − ri), (the length of
the ith interval [ri, ri+1]) and 4θj = (θj+1 − θj), (the length of the jth interval [θj , θj+1]. The subintervals
determine smaller polar rectangles Wij = {(r, θ) : < ri−1 ≤ r ≤ ri and θj−1 ≤ θ ≤ θj}, i = 1, . . . , n;
j = 1, . . . ,m. Denote the area of Wij by 4Wij . Recall that in a circle of radius r, a sector subtended by an
angle of θ radians has area 1

2r
2θ. Therefore

4Wij =
1
2

[
r2i (θj − θj−1)− r2i−1 (θj − θj−1)

]
= 1

2

[
r2i − r2i−1

]
(θj − θj−1) = 1

2 (ri + ri−1) (ri − ri−1) (θj − θj−1)
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When the subintervals [ri, ri+1] are small, 12 (ri + ri−1) may be approximated by
1
2 (ri + ri) = ri. Therefore

4Wij ' ri (ri − ri−1) (θj − θj−1) = ri (4ri4θj)

In the Cartesian coordinate system, we denoted the products 4xi4yj by 4Aij . We adopt the same notation
here and denote ri (4ri4θj) by ri4Aij . We must pick a point (r, θ) from each element Wij . To simplify
notation pick (ri, θj). We then form the sum

n∑
i=1

m∑
j=1

f(ri cos θj , ri sin θj)4Wij =

n∑
i=1

m∑
j=1

f(ri cos θj , ri sin θj)ri4Aij

The limit of such sums as all the 4ri’s and 4θj’s shrink to 0 is called the integral of f over W in polar
coordinates. We will denote it by ∫∫

W

f(r cos θ, r sin θ)rdA (1)

We use two integral signs because it is a limit of a double summation and the symbol rdA points out that
the area of an element Wij is ri4Aij = ri4ri4θj . The following examples show how we may evaluate∫∫
W

f(r cos θ, r sin θ)rdA using iterated integrals.

Example 6 Let f(x, y) = x2 + y + 4 and W be the region enclosed by the circles centered at (0, 0) with
radius 2 and 4 respectively. Thus W is the polar rectangle {(r, θ) : 2 ≤ r ≤ 4 and 0 ≤ θ ≤ 2π}. Clearly,

f(r cos θ, r sin θ) = r2 cos2 θ+ r sin θ+ 5. To evaluate
∫∫
W

(
r2 cos2 θ + r sin θ + 5

)
rdA by iteration, note that

if we fix θ, then r varies from 2 to 4. Since the fixed values of θ must be chosen from [0, 2π],∫∫
W

(
r2 cos2 θ + r sin θ + 5

)
rdA =

∫ 2π

0

∫ 4

2

(
r3 cos2 θ + r2 sin θ + 5r

)
drdθ

=

∫ 2π

0

[
r4

4
cos2 θ +

r3

3
sin θ +

5r2

2

]4
2

dθ

=

∫ 2π

0

(
60 cos2 θ +

56

3
sin θ + 30

)
dθ

=

∫ 2π

0

(
60 + 30 cos 2θ +

56

3
sin θ

)
dθ = 120π

Example 7 The curve r = 1 + sin θ, 0 ≤ θ ≤ 2π, (called a cardioid because it looks like a heart), is shown
below. The shaded region is the set W of points (r, θ) such that 0 ≤ r ≤ 1 + sin θ and 0 ≤ θ ≤ 1

2π. Let
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f(x, y) = xy. The integral of f over W , using polar coordinates, is
∫∫
W

(
r2 cos θ sin θ

)
rdrdθ

A cardioid The set W

To evaluate the integral by iteration, note that if we fix θ between 0 and 1
2π then r varies from 0 to 1+ sin θ.

Therefore∫∫
W

(
r2 cos θ sin θ

)
rdA =

∫ 1
2π

0

∫ 1+sin θ

0

r3 cos θ sin θdrdθ =

∫ 1
2π

0

([
r4

4

]1+sin θ
0

)
cos θ sin θdθ

= 1
4

∫ 1
2π

0

(1 + sin θ)
4
sin θ cos θdθ

Make a substitution u = 1 + sin θ and deduce that 14

∫ 1
2π

0

(1 + sin θ)
4
sin θ cos θdθ =

43

40

Remark 8 Integrals in polar coordinates may be handled under the general topic "changing variables in an
integral". For more details, go to page ??.

Exercise 9

1. Let R be the region in the upper half of the plane enclosed by the x-axis and the curve x2 + y2 = 4.

Change to polar coordinates and evaluate
∫∫
R

sin
√
x2 + y2dA.

2. Let R be the set of points below the circle x2+y2 = 1 and above the line y = x. Let f(x, y) = x2+y2+6x.

Convert to polar coordinates and evaluate
∫∫
R

(
x2 + y2 + 6x

)
dA.

3. Consider the curve with polar equation r = 4 sin θ. If we change to Cartesian coordinates we obtain,
(because r =

√
x2 + y2 and sin θ =

y

r
)

√
x2 + y2 =

4y√
x2 + y2

which may be transformed into x2+y2−4y = 0. Completing squares, we obtain x2+(y − 2)2 = 4 which
reveals that the curve is a circle centred at (0, 2) with radius 2. Note that the entire circle is traced

out when θ varies from 0 to π. Let R be the region enclosed by this circle and f(x, y) =
1

x2 + y2 + 1
.

Convert to polar coordinates and evaluate
∫∫
R

dA

x2 + y2 + 1
.
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4. Let R be the region enclosed by the curve with polar equation r = 6 cos θ and f(x, y) =
√
x2 + y2 + 5.

Evaluate
∫∫
R

f(x, y)dA.

9


