Evaluating a Double Integral by Iterations

For a continuous function f and regions R enclosed by continuous curves, we may calculate the double

integral / / f(z,y)dA using what one may call "partial integration" and thus avoid the process of forming
R

Riemann sums. The process involves keeping one of the two variables constant, (we did this when computing
partial derivatives), and integrate the resulting function of one variable. We illustrate the process using the
integral of f(z,y) = 25+ xy over the rectangle R with vertices at (0, —2,0), (5, —2,0), (5,4,0), (0,4, 0) which
we evaluated using the limits of sums. If we keep x constant, (the constant value must be between 0 and 5,
else there would be no numbers y such that (z,y) € R), we get a function y — zy + 25 of one variable y
with domain [—2,4]. Its integral over [—2,4] is

4
4
[2 (25 + zy) dy = [10y + $xy*|_, = (100 + 8z) — (—50 + 2z) = 150 + 6z
We now have a new a function u(z) = 150 + 6z of one variable x with domain [0,5]. Its integral over its
domain [0, 5] is

5
/ (150 + 62) dz = [150z + 327]) = 825
0

which is the value of the double integral //f(x, y)dA.
R

We could have kept y constant, (the constant value must be between —2 and 4), to get a function
x — xy + 25 of one variable x with domain [0, 5]. Its integral over this set is

5
/ (xy + 25) dr = [25x + %ymz]g =125+ %y
0

which is a function v(y) = 125 4+ 22y of one variable y with domain [—2,4]. When we integrate it over this
set and the result is

4
/ (125 + Zy) dy = [125y + %f’yQ]: = (500 + 100) — (=250 + 25) = 825.

—2

4
Since u(x) = / (25 + zy) dy, the integral of u over [0, 5] is denoted by
-2

5/ 4 5 pd
/ (/ (25 + zy) dy) dx or simply / / (25 + zy) dydz
0 -2 0 J-2

5

and it is called an iterated integral of f over R. Likewise, v(y) = / (zy + 25) dx, therefore its integral over
0

[—2,4] is denoted by

4 5 4 45
/ (/ (zy + 25) dx) dy or simply / / (xy + 25) dxdy
2 0 —2J0

and is also called an iterated integral of f over R. Note that in an iterated integral, the order of the symbols
dr and dy matters. When they appear as dydx the instruction is to keep z fixed and integrate a function
of one variable y with respect to y. The result will be a function of one variable x which you would then
proceed to integrate with respect to x. When they appear as dxdy, we first fix y.

5 pd 4 15
We verified directly that the two iterated integrals / / (25 + zy) dydz and / / (zy + 25) dxdy are
0 J—2 —2Jo

equal to the Riemann integral of f over R. In general, if f is a continuous function and R is a set enclosed
by continuous curves then the Riemann integral of f over R is equal to any one of its iterated integral over
R. This statement is called Fubini’s theorem.



Example 1 Let f(x,y) = 22y +1y% —32 and R be the rectangle with vertices at (0,0), (4,0), (4,6) and (0,6).
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If we keep the first variable x constant, we get a function of one variable y with domain [0,6]. Its integral is
¢ 6
u(z) = / (z%y +y° — 32) dy = [Lay® + 1y* — 3y, = 182% — 18z + 324
0

The domain of u is [0,4], because x can be assigned any constant value in the interval [0,4], and its integral
on this interval is

4
/ (182 — 18z + 324) do = [62° — 92 + 324, = 384 — 144 + 1296 = 1536
0

By Fubini’s theorem,
4 16
// (a:zy + 9 — 3:5) dA = / / (ny + 9 — 3.’L‘) dydx = 1536
o Jo
R

The other iterated integral is

6 rd 6 6
/0/0 (2®y +y® —3z) dady = /O([%msy+my3—%x2]3)dy:/o (Sy +4y® — 24) dy

= [8242 +y* —24y], =384 + 1296 — 144 = 1536
The region R does not have to be a rectangle:
Example 2 Let f(z,y) =12+ x —y and R be the triangle enclosed by linesy =2x+1, y = —1 and z = 2.
5T
4T

3
24

a
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Its vertices are at (—1,—1), (2,-1) and (2,5). Let f(z,y) = 124+ x —y. If we fix  to a constant value
between —1 and 2, we get a function of one variable y with domain [—1,2x + 1]. Its integral over the interval
18

u(z)

2x+1 2041
/2 (12+z—y)dy = [12y + 2y — %yQ]_l

120 +1)+2Re+1)— 3 (42’ +4z+1) — (-12—2— 1) =24z + 24



The integral of u(x) = 24z + 24 over [—1,2] is

2
/‘@MHJ@dm:ﬂmﬁ+%ﬂif:%+48—m+2kzm8

—1

2 2041
//(12+x—y)dz4:/ / (124 2 — y) dydz = 108
—1J-2
R

Say you choose to keep y, (instead of x), constant. The constant value of y must be between —1 and 5. You

get a function of one variable with domain [%(y - 1), 2]. Its integral over this set is

Thus

2
1,2 2
/%(yl) (12+ 2z —y)de 12z + 1a fxy]%(y_l)

= 2x+2-2y— [12~%(y71)+§(y71)27%(yfl)y

255 33y  3y°

8 4 8
2 2
The integral of v(y) = % — ?)i))Ty + 3% over [—1,5] is
5 2 2 375
255 33 3 255 33
/ 255 33y 3V 4y y_ 33y v

1\ 8 4 8 8 8 81 4
1275 —-825+125  —255—-33—1 864 108
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Example 3 Let R be the region in the plane enclosed by the curve y = \/z, the x-azxis and the line x = 4.
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Let f(z,y) = 2¢ + y + 3zy. To evaluate ils iterated integrals over R, we observe first, that if we choose a
fized value of x between 0 and 4, (we cannot choose values of x outside this interval because there would be
no numbers y such that (z,y) € R), we get a function of one variable y with domain [0,+/x]. Its integral

over this set is

u(z) = /0\/5 2z +y+ 3zy)dy = [sz + %yQ + %xyz](\)/; =22%/2 ¢ %x + %xZ
The domain of w is the interval [0,4] and
/04u(x)da: = /04 (2963/2 +sT+ %xz) dr = [%x5/2 + ixz + %mSK = %
By Fubini’s theorem,

4oV 308
2z +y+3zy)dA = (2z + y + 3zy) dydz = 5
0 0
R



To evaluate the other iterated integral, note that we have to choose a fixed value of y between 0 and 2. Then
we get a function of one variable x with domain [y2,4} and its integral over the interval is

4
v(y) =/ 2z +y+ 3zy)de = [m2+wy+ %mQyEZ =164 28y —y* —y® — %y5
y

2
The domain of v is the interval [0,2] and its integral over this interval is

2
2 308
/ (16+28y —y* —y* = 39°) dy = [16y + 14y% — 39 — 3v* — o] = 5~
0

Example 4 Let R be the set in the first quadrant enclosed by the parabola y = x2, the line y = —2x + 3 and
the x-axis. The parabola intersects the line, (in the first quadrant), at (1,1).
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Say we have to evaluate the integral of f(x,y) = 4x +y over R. If we choose to fix x and vary y, we must
evaluate two different integrals because: (i) when 0 < x < 1, y varies from 0 to x2, and (i) when 1 < x < %,
y varies from 0 to 3 — 2x. Thus

1 pa? 1.5 p3—2z
// (dx+y)dA = / / (4 + y) dydz + / / 4z +y) dydx
s 0 Jo 1 Jo
1 .2 1.5 4o
= / ([4zy+%y2]0 )dz+/ ([4xy+%y2}0 )d:c
0 1

1 1.5
/0 (42° + 3a*) dx + /1 (3 + 62 — 62%) du

:|1.5 B 47

257" 9
= {z4+} +[x+35022x3 =—
o 1 20

10 2

However, if we choose to keep y fived and vary x, we end up with one integral, since x varies from \/y to
1 (3—y). Indeed

/!(4x+y)dA

1 %(3*11) 1 1
5(3-v)
(4z + y) dedy = / 222 + zyl? dy
L/ (el 57)
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Exercise 5



1. Fvaluate each iterated integral

1,2
(a) / / (2 + 3zy — y®) dady
0 J-1
2 ,1/2
(c) / / (sinmy + 6y — cos 2x) dydx
1 Jo
2 rx
(e)/ / (e + z +y) dydx
1 Jo

4 %y
(9) / / (ze¥ — dzy + 1) dzdy
o Jo

(b)/12/35<i+6y4;>dydx
() /12/01 (e2* + 2xy) dwdy
(f) /03/093 (8z — 4y + 2?y?) dydx

(h) /04/_2; (x +y — 6zy) dady

1 2
2. Consider the iterated integml/ / (mQ + 3zy — y3) dxdy in question 1 (a) above. Note that we keep y
0o J-1

constant between 0 and 1 then integrate a function of one variable x on the interval [—1,2]. Therefore
we integrate (m2 + 3zy — y3) over a region consisting of all values of x between —1 and 2 and all
values of y between 0 and 1. The region must be the rectangle with vertices at (—1,0), (2,0), (2,1)

3 prx
and (—1,1). In the case of/ / (8x — 4y —|—x2y3) dydzx in part (f) of the same question, we keep x
0o Jo

constant between 0 and 8 and integrate the resulting function of one variable y over the interval [0, x].
Therefore we integrate (x2 + 3zy — y3) over a region consisting of all values of x between 0 and 3 and
all values of y between the line y = 0 and the line y = x. The region must be the triangle with vertices
at (0,0), (3,0) and (3,3). Determine the region of integration in parts (d), (e) and (h).

3. Let f(x,y) = 4z — 6xy and R be the region in the first quadrant enclosed by the line y = x and the

curve y = /x. Show that //f(:c,y)dA = %
R

4. Determine // (x + 4ay) dA where R is the region in the first quadrant enclosed by the parabola y = x2,
R

the line x = 2, and the z-axis.

5. Determine // (x2 + dxy — y2) dA where R is the region enclosed by the curve y = x/2, the liney = 2,
R

and the y-azis.

6. Evaluate the integral of f(z,y) = x + 2y over the set R enclosed by the parabola y = 3z — 2% and the

line y = 2x.

7. Let R be a region in the x -y plane and f be the constant function f(x,y) = 1. Show that //f(x, y)dA
R

is the area of the region R.

Double Integral in Polar Coordinates

Let a, b be nonnegative real numbers with a < b, and «, 8 be real numbers such that a < 8 and f—«a < 2.
The set {(r,0) : a < r < band a < 6§ < S} is called a polar rectangle. In the figure below, the polar
rectangles {(r,6): 1 <r <25 and 0.5 <60 <1.3} and {(r,6) : 0 <r <3 and 2.2 < 0 < 4.0} are shaded.



A polar rectangle {(r,6):a <r <band a <6 < 8} may be partitioned into smaller polar rectangles by
partitioning the intervals [a,b] and [a, 8] into smaller subintervals. In the figure below, the polar rectangle
{(r,0) : 1 <r <4 and0 <6< 1.8} is partitioned into 21 smaller polar rectangles by partitioning [1, 4] into
subintervals [1, 2], [2, 3] and [3, 4], and partitioning [0, 1.8] into subintervals [0, 0.3], [0.3,0.5], [0.5,0.8], [0.8, 1],
[1,1.3], [1.3,1.6] and [1.6,1.8].

o 1 2 3 4

A polar rectangle partitioned into smaller polar rectangles

Let W = {(r,0) :a <r <band a <80 < 3} be a polar rectangle and f(x,y) a function defined on W
whose formula is expressed in Cartesian coordinates  and y. The relation between (z,y) and (r,0) is
x =rcosf and y = rsin 6. Partition the interval [a, b] into smaller subintervals [ro, r1], [r1,72], - -, [Fn—1,7n]
where a =19 <11 < -+ < 11 < 1, = b, and partition [, 8] into smaller subintervals [0y, 604], [01, 62],

vy [Om=1,0m] Wwith @ = 0g < 01 < 03 < -+ < 01 < 0,, = B. Let Ar; = (r441 — 1;), (the length of
the ith interval [r;,7;11]) and A@; = (0,41 — 0;), (the length of the jth interval [6;,6;,1]. The subintervals
determine smaller polar rectangles W;; = {(r,0) : < 7,1 < r < r;and 6,1 < 0 < 0;},i=1,...,m;
j=1,...,m. Denote the area of W;; by AW;;. Recall that in a circle of radius r, a sector subtended by an
angle of § radians has area %7‘20. Therefore

AWij =5 [r? (05— 0;1) =171 (0; —0,-1)] = 3 [r? —riy] (0, — 0,-1) = & (ri +7riz1) (ri — ric1) (0 — 0,1)



When the subintervals [r;,r;11] are small, % (r; + 7;—1) may be approximated by % (r; +7;) = r;. Therefore
AWU‘ ~7r; (Ti - 7“1;1) (9J — 9j,1) =7T; (ArlAﬁj)

In the Cartesian coordinate system, we denoted the products Axz; Ay, by AA;;. We adopt the same notation
here and denote 7; (Ar; AB;) by r;AA;;. We must pick a point (r,6) from each element W;;. To simplify
notation pick (r;,6;). We then form the sum

ii f(ricos;,r;sinb;) AW;; = ZZf (ricosBj,r;sin@;)r; AA;
i=1 j=1 i=1 j=1

The limit of such sums as all the Ar;’s and Ag;’s shrink to 0 is called the integral of f over W in polar
coordinates. We will denote it by

/ flrcosf,rsinf)rdA (1)
W

We use two integral signs because it is a limit of a double summation and the symbol rdA points out that
the area of an element Wj; is m,AA;; = ryAr;Af;. The following examples show how we may evaluate

/ f(rcos,rsinf)rdA using iterated integrals.

Example 6 Let f(z,y) = 2% +y + 4 and W be the region enclosed by the circles centered at (0,0) with
radius 2 and 4 respectively. Thus W is the polar rectangle {(r,0) :2 <r <4 and 0 <8 < 2x}. Clearly,

f(rcosf,rsinf) =r?cos?+rsinf +5. To evaluate // (r? cos® § + rsinf + 5) rdA by iteration, note that

w
if we fix 0, then r varies from 2 to 4. Since the fized values of 8 must be chosen from [0, 2],

27 4
// (r2 cos? 0 + rsinf + 5) rdA = / / (7“3 cos? 0 + r2sinf + 5r) drdf
2

pY 3 274
= / L(30529—1—7’—sin9—|—5L do
0 4 3 2 |,

271' 56
= / (60 cos? 0 + 3 sin 6 + 30) do
0

27
/ (60 + 30 cos 260 + % sin 9) df = 1207
0

Example 7 The curve r = 1+45sinf, 0 < 0 < 27, (called a cardioid because it looks like a heart), is shown

below. The shaded region is the set W of points (r,0) such that 0 < r < 1+ sinf and 0 < 6 < %71 Let



flz,y) = xy. The integral of f over W, using polar coordinates, is // (r2 cos @ sin 9) rdrdf
w

A cardioid The set W

To evaluate the integral by iteration, note that if we fix 0 between 0 and %ﬂ then r varies from 0 to 1+sin 6.
Therefore

Make a substitution v = 1+ sinf and deduce that %/ (1 +sin 0)4 sin f cos df =

%ﬂ' 1+sin @ %T( ,’,,4 1+sin 6
/ / r3 cos 0 sin Odrdf = / {} cos 0 sin 0d0
0 0 0 4],

s

%/ (1 + sin6)" sin 6 cos 0d6
0

// (7'2 cos 0 sin 9) rdA
w

N|=

[N

T 43

Remark 8 Integrals in polar coordinates may be handled under the general topic "changing variables in an
integral”. For more details, go to page 77.

Exercise 9

1. Let R be the region in the upper half of the plane enclosed by the x-axis and the curve x? + y? = 4.
Change to polar coordinates and evaluate // sin /22 4+ y2dA.
R

. Let R be the set of points below the circle x> +y* = 1 and above the liney = x. Let f(z,y) = x*+y*+62.

Convert to polar coordinates and evaluate // (332 +y? + 63:) dA.
R

. Consider the curve with polar equation r = 4sinf. If we change to Cartesian coordinates we obtain,

(because r = \/x? + y? and sinf = y)
r

) 4y
2+ 2 —
r Y /.’IJ2+y2

which may be transformed into 2% +y* —4y = 0. Completing squares, we obtain x>+ (y — 2)2 = 4 which
reveals that the curve is a circle centred at (0,2) with radius 2. Note that the entire circle is traced

1
out when 6 varies from 0 to w. Let R be the region enclosed by this circle and f(x,y) = -5
¢ +y=+1
, dA
Convert to polar coordinates and evaluate —_.
24+ y2+1
R



4. Let R be the region enclosed by the curve with polar equation r = 6cos6 and f(x,y) = /22 +y> + 5.
Evaluate //f(:c,y)dA.
R



