
Integrals of Functions of Several Variables

We often resort to integrations in order to determine the exact value I of some quantity which we are unable
to evaluate by performing a finite number of addition or multiplication operations. For example, we have to
evaluate an integral to find the area of the region between the graph of f(x) = x2 +3 and the interval [0, 2].
The integral is ∫ 2

0

(
x2 + 3

)
dx (1)

We cannot determine this area by calculating the areas of a finite number of rectangles or triangles because
the region is not entirely enclosed by straight line segments.
In general, an integration problem involves the following basic items:

1. Some quantity I whose exact value we must determine, but we cannot calculate it by performing a
finite number of additions/multiplications.

2. Some set S that has a length, if it is a subset of the real line R, an area if it is a subset of the plane,
or a volume if it is a subset of 3-dimencsional space. A general term for the length or the area or the
volume of a set S is a measure of S. It should be possible to divide S into a finite number of "smaller
segments" S1, S2, . . . , Sn, to be called "elements of S", which also have measures. In the integral (1),
the set S is the interval [0, 2], with length 2. We can subdivide it into smaller subintervals, e.g. n equal
subintervals of length 4l = 2

n each. The symbol 4l is pronounced "delta l" which you should think of
as a "small length".

3. Some function f defined on S such that the product of the measure of an element Si and the value of
f at some point xi ∈ Si gives a reasonable estimate of the contribution of the element Si to the exact
value I we wish to determine. In the integral (1), the function is f(x) = x2 +3. If we divide S = [0, 2]

into n smaller subintervals of length 4l = 2
n each and pick a point xi in an element Si =

[
2i
n ,

2(i+1)
n

]
then the product f(xi) ·4l gives an approximate value of the area enclosed by the segment Si and the
graph of f .

Area between segment Si and the graph of f . Approximating area

Evaluating the integral boils down to doing the following:

• Slice S into a finite number of smaller elements Si.

• Multiply the measure of each element Si by the value of f at some point xi in the element to get an
estimate of the contribution of Si to the value of I.

• Add up all these contributions to get an estimate of the value of I.

• Determine the limit of all such sums as the measures of the elements shrink to zero. If the limit it
exists, it is by definition, the exact value of I and it is called the integral of f over S.
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We plan to denote a subset of R2, (the plane by), R and a subset of R3, (3-dimensional space), by B or
V .

Example 1 Let R be the rectangle with vertices at (0,−2, 0), (5,−2, 0), (5, 4, 0), (0, 4, 0) and f be the
function of two variables with formula f(x, y) = xy + 25. We wish to determine the volume of the solid,
(shown below), enclosed by the graph of f and the rectangle.

(5,­2,0)

(0,­2,0)

(5,4,0)

(0,4,0)

We know how to calculate the volume of any rectangular box, (simply multiply its length, width and
height), but this is not one of them, therefore we have to "integrate". More precisely, we have to
partition the rectangle R into smaller rectangles, use the smaller rectangles to calculate approximate
values of the required volume then determine the limit of the approximations. The easiest way to
partition R into smaller rectangles is to divide the intervals [0, 5] and [−2, 4] into smaller subintervals.
In the figure below, we divided [0, 5] into two equal subintervals using the points x0 = 0, x1 = 2.5,
x2 = 5 and [−2, 4] into 3 equal subintervals using points y0 = −2, y1 = 0, y2 = 2, y3 = 4. They
partition R into 6 smaller rectangles Rij = {(x, y) : xi ≤ x ≤ xi+1 and yj ≤ y ≤ yj+1}, i = 0 or 1 and
j = 0, 1, or 2.

R is partitioned into smaller rectangles.
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Each one of these smaller rectangles determines a small portion of the given solid, (shown below).

The smaller solids generated by the smaller rectangles

Since we know how to calculate volumes of rectangular boxes, we approximate each of the above small
solids with a box that has the same base and a suitable height. To simplify the computation, we chose
to approximate the small solid above the rectangle Rij by the box with base Rij and height f(xi, yj).
(In general, any point (si, tj) in Rij may be used to get the height of an approximating box.) The box
approximating the solid above R11 is shaded in the figure below. It has volume 2.5 × 2 × f(x1, y1) =
2.5× 2× f(2.5, 0) = 125

The total volume of the 6 approximating boxes is

2.5× 2 [f(0,−2) + f(0, 0) + f(0, 2) + f(2.5,−2) + f(2.5, 0) + f(2.5, 2)] = 2.5× 2× 150 = 750

Therefore
Volume of solid ' 750

In general, we may divide the interval [0, 5] into n smaller subintervals
[
0, 5n

]
,
[
5
n ,

10
n

]
,. . . ,

[
5i
n ,

5(i+1)
n

]
,

. . . ,
[
5(n−1)
n , 5

]
of equal length 4x = 5

n , (to simplify computations), and divide [−2, 4] into m smaller

subintervals
[
−2,−2 + 6

m

]
,
[
−2 + 6

m ,−2 +
12
m

]
, . . . ,

[
−2 + 6j

m ,−2 +
6(j+1)
m

]
, . . . ,

[
−2 + 6(m−1)

m , 6
]
of
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equal length 4y = 6
m , then form the rectangles

Rij =
{
(x, y) : 5in ≤ x ≤

5(i+1)
n and − 2 + 6j

m ≤ y ≤ −2 +
6(j+1)
m

}
, i = 0, . . . , n−1 and j = 0, . . . ,m−1

They are mn of them and each one has area 4Aij = 4x4y. Denote by Pij the small solid enclosed by
the graph of f and the rectangle Rij. Since we know how to calculate volumes of boxes, we approximate
it with a box that has the same base Rij and height f( 5in ,−2 +

6j
m ). Its volume is

f
(
5i
n ,−2 +

6j
m

)
4Aij =

[
5i

n

(
−2 + 6j

m

)
+ 25

]
5

n
· 6
m
=

(
750

mn
− 300i
mn2

+
900ij

m2n2

)
The sum of these mn volumes is

n−1∑
i=0

m−1∑
j=0

f
(
5i
n ,−2 +

6j
m

)
4Rij =

n−1∑
i=0

m−1∑
j=0

750

nm
−
n−1∑
i=0

m−1∑
j=0

300i

mn2
+

n−1∑
i=0

m−1∑
j=0

900ij

m2n2

Therefore the required volume is approximately equal to

n−1∑
i=0

m−1∑
j=0

750

nm
−
n−1∑
i=0

m−1∑
j=0

300i

mn2
+

n−1∑
i=0

m−1∑
j=0

900ij

m2n2

By definition,
n−1∑
i=0

m−1∑
j=0

750

nm
=

750

nm
+
750

nm
+ · · ·+ 750

nm︸ ︷︷ ︸ =
nm terms

750. Secondly,

n−1∑
i=0

m−1∑
j=0

300i

mn2
=

(
n−1∑
i=0

i

)m−1∑
j=0

300

mn2

 =

(
n(n− 1)

2

)
300m

mn2
= 150

(
1− 1

n

)
.

In case you are puzzled, we made use of the identity
n−1∑
i=0

i =
n(n− 1)

2
. Finally,

n−1∑
i=0

m−1∑
j=0

900ij

m2n2
=

(
900

m2n2

n−1∑
i=0

i

)m−1∑
j=0

j


=

900

m2n2

(
n (n− 1)

2

)(
m (m− 1)

2

)
= 225

(
1− 1

m

)(
1− 1

n

)
Therefore the volume of the solid is approximately equal to

n∑
i=1

m∑
j=1

(
750

nm
− 300i
mn2

+
900ij

m2n2

)
= 750− 150

(
1− 1

n

)
+ 225

(
1− 1

m

)(
1− 1

n

)
The limit of this sum as the widths 4xi and lengths 4yj of the rectangles Rij shrink to 0 is

750 + [−150 (1) + 225 (1) (1)] = 825

This must be the volume of the solid.

We take this opportunity to introduce some notations and terminology. The sum

n−1∑
i=0

m−1∑
j=0

f
(
5i
n ,−2 +

6j
m

)
4Rij =

n−1∑
i=0

m−1∑
j=0

750

nm
−
n−1∑
i=0

m−1∑
j=0

300i

mn2
+

n−1∑
i=0

m−1∑
j=0

900ij

m2n2

is called a Riemann sum of f determined by the rectangles

Rij =
{
(x, y) : 5in ≤ x ≤

5(i+1)
n and − 2 + 6j

m ≤ y ≤ −2 +
6(j+1)
m

}
, i = 0, . . . , n−1 and j = 0, . . . ,m−1
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The limit of these Riemann sums as all the 4xi’s and 4yj’s shrink to 0 is called the Riemann integral
of f over the set R and is denoted by ∫∫

R

f(x, y)dA.

Why two integral signs? Because the integral is the limit of a double summation
n−1∑
i=0

m−1∑
j=0

f
(
5i
n ,−2 +

6j
m

)
4Aij.

And why dA? Because we partitioned R into elements, (in this case rectangles), with areas 4Aij.

Riemann Integral of a Function of two variable

We now generalize the above construction. To this end, let f(x, y) be a given function of two variables and
R be a set in the plane which we may assume to be a rectangle. If it is not a rectangle, simply enclose it in a
suitable rectangle R and define f to have value zero outside R. Divide the rectangle into smaller rectangles
Rij which we may assume, for simplicity, to have the same length 4x and the same width 4y, hence the
same area 4Aij = 4x4y . Let (θi, αj) be a point in the rectangle Rij . The sum

n∑
i=1

m∑
j=1

f (θi, αj)4Aij . (2)

is called a Riemann sum of f . The limit of these Riemann sums as 4x and 4y tend to 0, (assuming the
limit exists), is called the Riemann integral of f over R and it is denoted by∫∫

R

f(x, y)dA.

It may be viewed as the volume of the solid enclosed by the graph of f and the set R. As explained in
Example 1, we use two integral signs because we determine the limit of a double summation. For this
reason, it is often called a double integral. The symbol dA serves to point out that the set R was divided
into elements Rij with area 4Aij .
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