
Second Order Derivatives for a Function of Two Variables

Let f(x, y) be a function from a subset of R2 into the set of real numbers. We defined its derivative at a
point (x, y) to be the linear map Df (x, y) that approximates f(x + h, y + k) − f(x, y) in such a way that
the error term f(x + h, y + k) − f(x, y) − Df (x, y) (h, k) shrinks to 0 much faster than ||(h, k)||. If f has
continuous partial derivatives then a formula for Df (x, y) (h, k) is known; it is

Df (x, y) (h, k) = fx(x, y)h+ fy (x, y) k

Example 1 Let f(x, y) = x3 + 4xy− y2. The domain of f is the set of all the points in R2. The derivative
of f at an arbitrary point (x, y) is the linear approximator with formula

D (x, y) (h, k) =
(
3x2 + 4y)h+ (4x− 2y

)
k (1)

For instance, if we choose (x, y) = (2,−1) then (1) states that the derivative of f at (2,−1) has formula

D (2,−1) (h, k) = 8h+ 10k

If you choose a different point, you may get a different derivative. For example, the derivative of f at (1, 3)
has formula

D (1, 3) (h, k) = 15h− 2k

This is expected because the shape of the graph of f changes from point to point. To define the second
derivative of f at a point (x, y) we ask the question: What linear expression, (linear in (r, s)), approximates

D (x+ r, y + s) (h, k)−D (x, y) (h, k)

in such a way that the error in the approximation shrinks to 0 faster than ||(r, s)||? To answer the question,
we simply expand D (x+ r, y + s) (h, k)−D (x, y) (h, k) and simplify. The result is

D (x+ r, y + s) (h, k)−D (x, y) (h, k) =
(
6xr + 4s+ 3r2

)
h+ (4r − 2s) k (2)

It we write (2) as

D (x+ r, y + s) (h, k)−D (x, y) (h, k) = (6xr + 4s)h+ (4r − 2s) k + 3r2h

then the linear term in (r, s) is clear; it is (6xr + 4s)h+(4r − 2s) k. The error term is also clear; it is 3r2h
and it shrinks to 0 faster than ||(r, s)||. Note that the expression (6xr + 4s)h+ (4r − 2s) k is a function of
(r, s) and (h, k). The function which maps ((r, s) , (h, k)) into (6xr + 4s)h+ (4r − 2s) k is called the second
derivative of f at (x, y) and it is denoted by D2f (x, y). More precisely,

D2f (x, y) ((r, s) , (h, k)) = (6xr + 4s)h+ (4r − 2s) k

Exercise 2 For each given function f , do the following:

(a) Evaluate the expression Df(x+ r, y + s) (h, k)−Df(x, y) (h, k).

(b) Determine the linear function that may be used to approximate Df(x+r, y+s) (h, k)−Df(x, y) (h, k).

(c) Verify that the error in the approximation shrinks to 0 faster than ||(r, s)|| and write down a formula
for D2f (x, y) ((r, s) , (h, k)).

1. f(x, y) = x2y2

2. f(x, y) = 2x3 + 4xy3 − y

3. f(x, y) = 4xy − 7x3 + 3y2
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Definition 3 Let f(x, y) be a function of two variables with a derivatives Df(x, y) at every point (x, y) in its
domain. It has a second derivative at a point (x, y) in its domain if there is a function that is linear in (r, s)
and approximates Df(x+ r, y + s) (h, k)−Df(x, y) (h, k) in such a way that the error in the approximation
shrinks to 0 faster than ||(r, s)||. The linear approximator is then denoted by D2 (x, y) and is called the
second derivative of f at (x, y).

It can be shown that if f has continuous first and second order partial derivatives then a formula for its
second derivative is

D2 (x, y) ((r, s) , (h, k)) =

(
r s

) fxx (x, y) fxy (x, y)

fxy (x, y) fyy (x, y)

 h

k


In expanded form, D2 (x, y) ((r, s) , (h, k)) = fxx (x, y) rh + (rk + sh) fxy (x, y) + skfyy (x, y). To verify it,
we apply it to the function f(x, y) in Example 1. Since fxx = 6x, fxy = 4 and fyy = −2, the result, (as
expected) is

D2 (x, y) ((r, s) , (h, k)) =
(
r s

) 6x 4

4 −2

 h

k


=

(
6xr + 4s 4r − 2s

) h

k

 = (6xr + 4s)h+ (4r − 2s) k

We can now state, (without proof), a version of Taylor’s theorem for a function of two variables and
derive the test for the nature of a critical point which we promised earlier.

Theorem 4 (Taylor’s Theorem). Let f have continuous first and second order partial derivatives at all
points in its domain. Let (x, y) and (x+ h, y + k) be in the domain of f . Also assume that the line segment
joining (x, y) to (x+ h, y + k) is in the domain of f . Then there is a point (α, β) on the line segment such
that

f (x+ h, y + k) = f (x, y) +Df(x, y) (h, k) +D2f (α, β) ((h, k) , (h, k))

We now justify the test for the nature of a critical point which we introduced on page ??. Thus assume
that (c, d) is a critical point of f . Then fx (c, d) is zero and so is fy (c, d). Take any point (c+ h, d+ k) near
(c, d). By Taylor’s Theorem, there is point (α, β) on the line segment joining (c, d) and (c+ h, d+ k) such
that

f (c+ h, d+ k) = f (c, d) +Df(c, d) (h, k) +D2f (α, β) ((h, k) , (h, k)) (3)

In matrix form,

f (c+ h, d+ k) = f (c, d) + (0)h+ (0) k +
(
h k

) fxx (α, β) fxy (α, β)

fxy (α, β) fyy (α, β)

 h

k



= f(c, d) + h2fxx (α, β) + 2hkfxy (α, β) + k
2fyy (α, β)

Since the partial derivatives of f are continuous, fxx (α, β) ' fxx (c, d), fxy (α, β) ' fxy (c, d) and fyy (α, β) '
fyy (c, d). Denote fxx (c, d) by A, fxy (c, d) by B, fyy (c, d) by C, AC −B2 by H and move f(c, d) to the left
hand side. The result is

f (c+ h, d+ k)− f (c, d) ' Ah2 + 2Bhk + Ck2 (4)

The right hand side of (4) is an example of what is called a quadratic form in two variables, (in this case the
variables are h and k).

Suppose H > 0, (i.e. suppose AC −B2 > 0).
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Then A and C are non-zero and they have the same sign. The main idea is to write Ah2 + 2Bhk + Ck2

as a linear combination of two squared terms. To this end, add and subtract
B2k2

A
to the right hand side of

(4). The result is

f (c+ h, d+ k)− f (c, d) ' Ah2 + 2Bhk +
B2k2

A
+ Ck2 − B2k2

A

= A

(
h2 +

2Bhk

A
+
B2k2

A2

)
+
(
AC −B2

) k2
A

= A

(
h+

Bk

A

)2
+H

k2

A

If A is positive then as long as h and k are close to 0 (so that the approximation (4) is valid),

f (c+ h, d+ k)− f (c, d) ' A
(
h+ Bk

A

)2
+H k2

A ≥ 0

therefore f(x, y) ≥ f(c, d) for all (x, y) in some neighborhood of (c, d). This implies that (c, d) is a point of
relative minimum. However, if H is positive and A is negative then

f (c+ h, d+ k)− f (c, d) ' A
(
h+

Bk

A

)2
+H

k2

A
≤ 0

for all suffi ciently small values of h and k. This implies that f(c, d) ≥ f(x, y) for all (x, y) in some neighbor-
hood of (c, d), hence (c, d) is a point of relative maximum.

Suppose H is negative.
If A is also negative then H

A is positive. If we choose h = −BkA then

f (c+ h, d+ k)− f (c, d) ' A
(
h+

Bk

A

)2
+H

k2

A
= H

k2

A
≥ 0

On the other hand, the choice k = 0 and h 6= 0 gives

f (c+ h, d+ k)− f (c, d) ' A
(
h+

Bk

A

)2
+H

k2

A
= Ah2 ≤ 0

This shows that every neighborhood of (c, d) contains points (x, y) such that f (x, y) > f (c, d) and others
(u, v) such that f(u, v) < f (c, d). Therefore (c, d) is neither a point of relative maximum nor a point of
relative minimum. A similar conclusion is arrived at if A is positive. If A = 0 we arrive at the same, but
conclusion along a different route. More precisely, when A = 0 then (4) implies that

f (c+ h, d+ k)− f (c, d) ' 2Bhk + Ck2 (5)

with B 6= 0, (else H would not be negative). By fixing k, we can find values of h that make 2Bhk + Ck2

positive and others that make it negative. Therefore every neighborhood of (c, d) contains points (x, y) such
that f (x, y) > f (c, d) and others (u, v) such that f(u, v) < f (c, d), which implies that (c, d) is neither a
point of relative minimum nor a point of relative maximum.

To prove the last part it suffi ces to give examples. Take

f(x, y) = x2 + y3, g(x, y) = x4 + y4, h(x, y) = −x4 − y4 and the point (0, 0) .

It turns out that (0, 0) is a critical point for all the three functions, (verify). Furthermore, H = 0 for all
three. Note that g(x, y) = x4+y4 ≥ 0 for all (x, y) ∈ R2 and g(0, 0) = 0, therefore (0, 0) is a point of relative
minimum for g. A similar argument shows that (0, 0) is a point of relative maximum for h. In the case of
f , we observe that if y > 0 then f(0, y) > 0 = f(0, 0) and if y < 0 then f(0, y) < f(0, 0). This shows that
every neighborhood of (0, 0) contains points (x, y) such that f (x, y) > f (0, 0) and others (u, v) such that
f(u, v) < f (0, 0), which implies that (0, 0) is neither a point of relative minimum nor a point of relative
maximum.
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