Second Order Derivatives for a Function of Two Variables

Let f(x,y) be a function from a subset of R? into the set of real numbers. We defined its derivative at a
point (z,y) to be the linear map Df (x,y) that approximates f(z + h,y + k) — f(x,y) in such a way that
the error term f(x + h,y + k) — f(z,y) — Df (z,y) (h, k) shrinks to 0 much faster than ||(h,k)||. If f has
continuous partial derivatives then a formula for Df (z,y) (h, k) is known; it is

Df (l',y) (h7k) = fz(xay)h+fy (Ivy)k

Example 1 Let f(x,y) = 23 + 4wy — y?. The domain of f is the set of all the points in R?. The derivative
of [ at an arbitrary point (x,y) is the linear approximator with formula

D (z,y) (h,k) = (32° +4y)h + (4 — 2y) k (1)
For instance, if we choose (x,y) = (2,—1) then (1) states that the derivative of f at (2,—1) has formula
D (2,~1) (h,k) = 8h + 10k

If you choose a different point, you may get a different derivative. For example, the derivative of f at (1,3)
has formula
D(1,3) (h,k) = 15h — 2k

This is expected because the shape of the graph of f changes from point to point. To define the second
derivative of f at a point (x,y) we ask the question: What linear expression, (linear in (r,s)), approzimates

D(x+ry+s)(hk)—D(z,y) (hk)

in such a way that the error in the approximation shrinks to 0 faster than ||(r, s)||? To answer the question,
we simply expand D (x + 7,y + s) (h, k) — D (z,y) (h, k) and simplify. The result is

D(x+r,y+s)(hk)—D(z,y) (h k)= (6:cr+45+37"2) h+ (4r —2s) k (2)
It we write (2) as
D(z+7ry+s)(hk)— D (z,y) (hk) = (62zr +4s) h + (4r — 25) k + 3r?h

then the linear term in (r,s) is clear; it is (6zr + 4s) h+ (41 — 2s) k. The error term is also clear; it is 3r2h
and it shrinks to 0 faster than ||(r,s)||. Note that the expression (6xr + 4s) h + (4r — 2s) k is a function of
(r,s) and (h, k). The function which maps ((r,s), (h,k)) into (6xr + 4s) h + (4r — 2s) k is called the second
derivative of f at (z,y) and it is denoted by D?f (x,y). More precisely,

D2f (z,y) ((r,s), (h,k)) = (6xr +4s) h + (4r — 2s) k
Exercise 2 For each given function f, do the following:
(a) Evaluate the expression Df(x + r,y+ s) (h, k) — Df(z,y) (h, k).
(b) Determine the linear function that may be used to approximate D f(x+r,y+s) (h,k)—Df(z,y) (h, k).

(¢) Verify that the error in the approxzimation shrinks to 0 faster than ||(r, s)|| and write down a formula

for D*f (z,y) ((r,5), (h, k)).
1. f(z,y) = 2*y?
2. flo,y) =223 +4ay® —y

3. flx,y) = day — Ta3 + 3>



Definition 3 Let f(x,y) be a function of two variables with a derivatives D f(x,y) at every point (z,y) in its
domain. It has a second derivative at a point (x,y) in its domain if there is a function that is linear in (r, s)
and approzimates Df(x +r,y+ ) (h, k) — Df(x,y) (h,k) in such a way that the error in the approximation
shrinks to 0 faster than ||(r,s)||. The linear approzimator is then denoted by D? (z,y) and is called the
second derivative of f at (x,y).

It can be shown that if f has continuous first and second order partial derivatives then a formula for its
second derivative is

Jaa (T, 9) Jzy (z,y) h

fxy (m,y) fyy (wvi‘/) k

In expanded form, D? (x,y) ((r,5), (h,k)) = fux (x,y) Th + (rk + Sh) foy (z,y) + skfy, (x,y). To verify it,
we apply it to the function f(z,y) in Example 1. Since f,, = 6z, fzy = 4 and f,, = —2, the result, (as
expected) is

D%%yHWwLULm):<v" s)

6z 4 h
D?(z,y) ((r,s), (b, k) = (r 5)
4 -2 k
h
= (6xr+4s 4r—2s> = (6zr +4s)h+ (4r —25) k
k

We can now state, (without proof), a version of Taylor’s theorem for a function of two variables and
derive the test for the nature of a critical point which we promised earlier.

Theorem 4 (Taylor’s Theorem). Let f have continuous first and second order partial derivatives at all
points in its domain. Let (x,y) and (x + h,y + k) be in the domain of f. Also assume that the line segment
joining (z,y) to (x + h,y + k) is in the domain of f. Then there is a point («, 3) on the line segment such
that

f @+ hyy+k) = f (2.9) + Df(z,) (b, k) + D2f (@, B) ((h, ), (h, k)

We now justify the test for the nature of a critical point which we introduced on page ??. Thus assume
that (¢, d) is a critical point of f. Then f; (¢, d) is zero and so is f, (¢, d). Take any point (¢ + h,d + k) near
(¢,d). By Taylor’s Theorem, there is point («, ) on the line segment joining (c,d) and (c+ h,d + k) such
that

fle+hd+k)=f(cd) +Df(c.d)(hk) + D*f (. B) ((h, k), (h, k) (3)

In matrix form,

frx (aaﬁ) fmy (avﬁ) h

flethd+k) = fled)+O)h+©)k+( h k)
fay (a0, ) fyy (v, B) k

= f(cv d) + h2fa:w (a’ﬁ) + 2hkfwy (O‘33> + kayy (OZ,B)

Since the partial derivatives of f are continuous, frz (o, 8) = fou (¢, d), foy (@, 8) = foy (¢, d) and fyy (o, ) ~
fyy (¢, d). Denote fy; (c,d) by A, fuy (c,d) by B, fyy (c,d) by C, AC — B? by H and move f(c,d) to the left
hand side. The result is

flc+h,d+Fk)— f(c,d) ~ Ah? +2Bhk + Ck? (4)

The right hand side of (4) is an example of what is called a quadratic form in two variables, (in this case the
variables are h and k).
Suppose H > 0, (i.e. suppose AC — B% > 0).



Then A and C are non-zero and they have the same sign. The main idea is to write Ah? + 2Bhk + Ck?
27.2

as a linear combination of two squared terms. To this end, add and subtract to the right hand side of

(4). The result is

B2 2 BQ 2
Flethd4k)—f(ed) ~ Ah?+2Bhk+BF L og2— Ak
2Bhk  B%k? 2
2 2
BE\® k2
= A — H—
<h+ A) s

If A is positive then as long as h and k are close to 0 (so that the approximation (4) is valid),
flethd+k)—fled)~A(h+ B0 L HE >0

therefore f(x,y) > f(c,d) for all (z,y) in some neighborhood of (¢,d). This implies that (c,d) is a point of
relative minimum. However, if H is positive and A is negative then

BE\? k2
fle+h,d+k)—f(c,d) ~A h+7 +HZ <0
for all sufficiently small values of h and k. This implies that f(c,d) > f(z,y) for all (z,y) in some neighbor-
hood of (¢, d), hence (¢, d) is a point of relative maximum.

Suppose H is negative.
If A is also negative then % is positive. If we choose h = fBTk then
Bk>2 K2k

— ~ — — = — >
fle+hd+k)—f(cd) A<h+A +H— =H—>0

On the other hand, the choice k = 0 and h # 0 gives

BEN? | K
flc+h,d+k)— f(cd) :A(h—FA) +HI =Ah? <0
This shows that every neighborhood of (¢, d) contains points (z,y) such that f (z,y) > f(c,d) and others
(u,v) such that f(u,v) < f(c,d). Therefore (c,d) is neither a point of relative maximum nor a point of
relative minimum. A similar conclusion is arrived at if A is positive. If A = 0 we arrive at the same, but
conclusion along a different route. More precisely, when A = 0 then (4) implies that

flc+h,d+k)— f(c,d) ~2Bhk + Ck? (5)

with B # 0, (else H would not be negative). By fixing k, we can find values of h that make 2Bhk + Ck?
positive and others that make it negative. Therefore every neighborhood of (¢, d) contains points (z,y) such
that f (z,y) > f(c,d) and others (u,v) such that f(u,v) < f(c,d), which implies that (¢, d) is neither a
point of relative minimum nor a point of relative maximum.

To prove the last part it suffices to give examples. Take
fe,y) =2 +9°, g(z,y) = 2" +y*, h(z,y) = —2' —y" and the point (0,0).

It turns out that (0,0) is a critical point for all the three functions, (verify). Furthermore, H = 0 for all
three. Note that g(z,y) = z* +y* > 0 for all (z,y) € R? and ¢(0,0) = 0, therefore (0,0) is a point of relative
minimum for g. A similar argument shows that (0,0) is a point of relative maximum for h. In the case of
f, we observe that if y > 0 then f(0,y) > 0 = f(0,0) and if y < 0 then f(0,y) < f(0,0). This shows that
every neighborhood of (0,0) contains points (x,y) such that f (z,y) > f(0,0) and others (u,v) such that
flu,v) < f(0,0), which implies that (0,0) is neither a point of relative minimum nor a point of relative
maximum.



