Derivative of a Composition

It may be necessary, for various reasons, to change variables in a given function. For example, one may
change from Cartesian coordinates (z,y) to polar coordinates (r,6) in a function like

flz,y) =a® —y°.
The polar and Cartesian coordinates are related by the equations
T =rcosf and y=rsinf
therefore such a change would give a new function
F(r,0) =r? (cos® § — sin®0) = r* cos 20

which may be more convenient to handle than f, (since it involves one term 72 cos 26). Note that F(r,0) is
really a composition of f(x,y) with g(r,0) = (rcos,rsinf).

This section introduces a formula for the derivative of a composition f o g in terms of the derivatives of f
and g. It turns out to be a generalization of the expression for the derivative of a composition of functions of
one variable. To revisit that formula, let f and g be functions of one variable. Suppose g is differentiable at
a point ¢ in its domain with derivative ¢’(c¢). Furthermore, suppose f is differentiable at g(c¢) with derivative
f'(g(c)). (We are assuming that g(c) is in the domain of f.) Then, by the chain rule, f o g is differentiable
at ¢ with derivative

(fog) ()= f'(g(e) - g'(c)
Thus the derivative of f o g is obtained by multiplying the derivative of f at g(c) with the derivative of g at
c.

Now consider functions g(u,v) : A C R? — R? and f(z,y) : B C R? — R. Assume that g(A4) C B so
that the composition F' = f o g is defined. For convenience, assume that g is a function of variables v and v
while f is a function of another set of variables 2 and y. Since g is from a subset of R? into R?, it has two
components:

g(ua U) = (gl (U, ’U), g?(ua U))
Suppose g is differentiable at a point (c,d) € A. Its Jacobian matrix at (c,d) is

0g1(c,d) 091 (c, d)

ou ov
dga(c, d) 0g2(c,d)
ou ov

Suppose, in addition, f is differentiable at g(c, d). Its Jacobian matrix at g(c,d) is

( 9f(g(c,d)) 9f(g(c, d)) )
ox oy

According to the chain rule for functions of several variables, F' = f o g is differentiable at (c,d) and its

OF (c,d) OF (c,d) ) at (c,d) is given by
o v

Jacobian matrix <

9g1(c,d) 9g1(c, d)
OF (c,d) OF (c,d) \ _ ( 9f(gle,d)  f(g(c.d)) Ou ov
( ou o ) B ( Ox dy ) dga(c,d) dga(c,d) W
ou ov

In other words, the Jacobian matrix for F' = f o g is the product of the two Jacobian matrices for f and g
in that order. Since (1) is a product of matrices and matrix multiplication is not commutative, the order of
the product is important.




Example 1 Let f(x,y) = 22 — y? and g(u,v) = (ucosv,usinv). Form the composition F(u,v) = f o g.
Consider the point (2, %) in R2. The Jacobian matriz for g at (2, 3) is

us _94in & 1 _
cos 3 2sin 3 5 \/3
o ud 3

sin % 2 cos 3 ¥ 1

and the Jacobian matriz for f at (1,4/3), (i.e. at g(2, 5)), is
(2 —23)
By the chain rule, the Jacobian matriz of F = fog at (2,%) is

ERVE
(2 -23) ~(-2  -43)
1

o

This implies that fog(2+h, T +k)— fog (2,%) ~ —2h— 4/3k and the error in this approzimation shrinks
to 0 faster than ||(h, k)||.

Since we have the formulas for f and g, we may calculate the Jacobian matriz directly. Indeed

F(u,v) = fog(u,v) = f (ucosv,usinv) = u* cos 2v

F F
Therefore M = 2ucos2v and W = —2u?sin2v, hence the Jacobian matriz of the composition
at (2, %)is
0F(2,%) 0F(2,%) - . om
< o 3 5 3 =( 2(2)cos 2 —-2(2)%sin2f ) =( -2 —4v3 )

In general, the Jacobian matriz of F = f o g at an arbitrary point (u,v) is

COS v —usinv
( 2u cosv —2usinv ) = ( 21 cos
sinv U COSV

2y — 2usin?v —4 cos v sin v )

= ( 2u cos 2v —2usin2v )

Standard Notation

Let g(u,v) : A C R? — R? and f(z,y) : B C R? — R be given functions with g(4) C B, so that the
composition F' = f o g is defined. Since g is a function from R? into R?, it has two components, therefore
we may write it as

9(u,v) = (91(u,v), g2(u, v))

Using formula (1), the Jacobian matrix of F' = f o g at (u,v) is

g1 (u,v) dg1(u,v)

( OF (wv)  OF (u,0) ):< Of(g(u,v)) O (g(u,v)) ) Ou ov
ou ov Oz Ay dga (U, U) 092 (Ua U)

ou v

Since g1 (u,v) replaces x and gs(u,v) replaces y when we form the composition f o g, it is standard practice

to write x = g1(u,v), y = g2(u,v) and f(g(u,v)) = f(z,y). Consequently w is written as ? and
u u



d
99:(c,d) as % Similarly, 9g2(u, ) and 9g2(u,v) are written as 9y and 9y respectively. Consequently,
v v u ov ou ov

the above matrix equation is written as

o 0o
( oF (U,’U) oF (uy'U) ) — ( 8f($,y> 8f(.%‘,y) > 8u 81}
ou ov Ox Oy oy dy
u D
or simply
oz oz
SRR E 3
ou o )\ Ox oy dy dy
o R

The next pill may be hard to swallow; instead of regarding f o g(u, v) as a new function F(u,v), the practice

is to write it as f(u,v). Then its Jacobian matrix is written as ( 3f(au,v) 5‘f(au,v) > instead of
u v
( OF (u, v) OF (u, v) ) Thus, instead of writing
ou Ov
o0 o
< OF (u,v) OF (u,v) ):( of of ) du v
ou O ox Oy dy dy
ou Ov
it is common practice to write
0w o
( Of(uv)  Of(u) ) _ ( o of > Qu v
ou BN ox dy Ay dy
Ju Ov
or simply
o0 o
( of of >_ ( aof aof ) ou ov
Ju v Ox dy dy Jy
Ju Ov
This is multiplied out to get
o _ 0fos ofoy
ou Oz du Oyou
of _ ofoc ofoy
ov Oz dv  Oyodv

and it is generally called the chain rule for a function of two variables.

Example 2 Let f(x,y) be a given function and g(r,0) = (rcos@,rsinf). Form the composition F(r,0) =

flg(r,0)). Write x =rcosf and y = rsinf. Then I and 28 e given by
r
oF _ 9fox g@*cosﬁngsinﬂg
or Oz or Oyor ox y
or - 0fox 0foy o 00f e9f
90 ~ 0x00  oyoo oz oy



Higher order partial derivatives are obtained by repeated differentiation. For example
O*F 9 (OF\ 0 of f of af
a@‘&(&)‘&@j%*ﬂaa> ‘%(m) 9&(@)

M, therefore g a—f is evaluated the same way we
0x or \ Oz

Remember that g—f is an abbreviation for
x

evaluated aﬁf(g(r7 0)). The result is
r
o (of of a [(0f\ Oy 0% f o2f\ .
&(m) m(w)a*a(a)m(mzm”+awx“”
9 (05N _ 0 (o5\ox 9 (0r\oy (5N, (PF) .,
or\ody) 0x\dy)or oy\dy)or \0zdy )2
Therefore
PF 2f %f \ . : >*f PrY .
5z = cos@{<ax2)cos0+<ayax)s1n0}+bln0 [(8xay)cos0+<ay2>sm0]

2 2 92
= <gx];) cos? 0 + 2 <8ay@f:c> sin 6 cos 6 + <8yf> sin? 0

2
To determine 8871;’ one has to compute % (%Z) = % (1" sin@% + 7 cos 02;) By the product rule

Similarly,

Dt et — et ® s ? (2 vang® of
89( rbln@arr—i—rcos@ay)— TCObH@x rsin 680 (8 rbln@ay—i—rc 89 By

0 0
We now calculate the partial derivatives of a—f and or with respect to 0 the same way we calculated their
x

dy

partial derivatives with respect to r.
9 (of of\ox 9 (0f
00 \ Ox 63@ Ox 6 x

) 02
;Z <8w2> (—rsinf) + <8y8fx) (rcos®)
o (0f of o (of . o f
5 (5) = o (ay) 5+ 3 (3r) 5 = (3aay) Crono)+ (G3) ceos0
Therefore

O*F of 0% f _ o f of .
W —r&rcosé’—rsm@[(ax? (—rsm@)—&—(ayax)(rcos(‘))]—raysm9

82]0 ) 2f
+rcosf [(8:08@/) (—rsinf) + < ) (r cos 9)]
This may be reduced to

O*F of of Pr\ . o N AW o (Of 5
W_ {%cose—i—aysmﬁ} (83:2> sin® 6 — 2r (8x3y) sinfcosf +r (ay2> cos” 6

The chain rule extends to more general functions in the obvious way. Thus let g : A C R? — R? and
f: B CR? — R™ be given functions such that g(A) C B so that the composition f o g is defined. If
g is differentiable at a point ¢ = (c1,...,¢p) in its domain g and f is differentiable at g(c) then f o g is
differentiable at ¢ and its derivative is related to the derivatives of f and g by the following identity:

D (f og)(c)h = Df(g(c)) o Dg(c)h.

)
)

QJ‘Q’)
SRS

In particular:



Let the Jacobian matrix for g at ¢ be

9g1(c)
8u1

9g4(c)
811,1

Let the Jacobian matrix for f at g(c) be

9f1(g(c))

85131

dfm(g(c))

81'1

Then the Jacobian matrix for fog at c is

9/1(g(c))

8371

Afm(g(c)
0x1

Therefore
df1(g(c)

62131

D(fog)(c)h=

8.1‘1

Ifm(g(c))

9f1(g(c))

Oz,

9fm(g(c))
Oz,

9f1(g(c))

Oxq

9fm(g(c))

Oz,

9f1(g(c))

Oz,

9fm(g(c))

dg1(c)
811,1

9g1(c)
6u1

9g4(c)
81,61

9gq(c)

Ouyp

hi

hyp

Exercise 3 Let f : A C R?> — R be a given function. Consider the composition F = f o g for each given

function g : R? — R? then determine expressions for F,, Fy, Fuy, Fyy and Fy,.

1. g(u,v) = (3u — bv, Tu + 6v) .

2. g(u,v) = (—v + Inwu,u+ lnwv).

Mean Value Theorem

Theorem 4 Let f(x,y) be a differentiable function from a subset of R? into R. Assume that the line segment
¢ joining (a1,a2) and (b1, ba) is in the domain of f. Denote (by,bs) — (a1, a2) by (h, k). Then there is a point

(c1,¢2) on £ such that

f(b1,b2) = f(a1,a2) = Df (c1,¢2) (b, k) = hfs (c1,¢2) + K fy (c1,c2)



We prove the theorem by restricting f to points on ¢. This essentially gives us a function of one variable
to which we may apply the Mean Value theorem for a function of one variable. To this end, note that the
points on ¢ have the form (a1,as) +t(h, k) = (a1 +th,as +tk) where 0 < ¢ < 1. Indeed, when ¢ = 0 the
expression (a; + th,as + tk) reduces to (a1,as) and when ¢ = 1 it simplifies to (b1, b2). The values of ¢
between 0 and 1 generate points on £ in between the two end points. Now consider the function

g(t) = f(a1 + th,as + tk)

It is the composition of the two differentiable functions f and u(t) = (a1 + th, az + tk). Further more, it is
a function of one variable ¢ that satisfies the two conditions

9(0) = f (a1, a2) and g(1) = f (b1, b2)
By the mean value theorem for a function of one variable, there is a number 6 between 0 and 1 such that
9(1) = g(0) = ¢'(0) (1 - 0)
Denote u(6) = (a1 + 0h, as + 0k) by (c1,c2). Since g(t) = f ou(t), the chain rule implies that

h

g'(0)(1-0) = Df(ci,ea) 0 Du(0) (1 -0) = ( folcr,ca)  fyler,ca) ) .

= hfu(er, ) + kfyler, ca)

The extension to functions of three or more variables is straight-forward. For example, if f(z,y,z2) is a
differentiable function of three variables from a subset of R? into R and the line segment ¢ joining points
(a1, az2,a3) and (b1, ba, bs) is in the domain of f then there is a point (c¢1, ¢c2,¢3) on £ such that

[ (b1,b2,b3) — f(a1,az,a3) = (b1 — a1) fz (c1,c2,¢3) + (b2 — az) f, (c1,¢2,¢3) + (b3 — as) f- (c1, ca, ¢3)

As you will soon find out, the Mean Value Theorem is a powerful theoretical tool that is used in many
situations.



