
Derivative of a Composition

It may be necessary, for various reasons, to change variables in a given function. For example, one may
change from Cartesian coordinates (x, y) to polar coordinates (r, θ) in a function like

f(x, y) = x2 − y2.

The polar and Cartesian coordinates are related by the equations

x = r cos θ and y = r sin θ

therefore such a change would give a new function

F (r, θ) = r2
(
cos2 θ − sin2 θ

)
= r2 cos 2θ

which may be more convenient to handle than f , (since it involves one term r2 cos 2θ). Note that F (r, θ) is
really a composition of f(x, y) with g(r, θ) = (r cos θ, r sin θ).

This section introduces a formula for the derivative of a composition f ◦ g in terms of the derivatives of f
and g. It turns out to be a generalization of the expression for the derivative of a composition of functions of
one variable. To revisit that formula, let f and g be functions of one variable. Suppose g is differentiable at
a point c in its domain with derivative g′(c). Furthermore, suppose f is differentiable at g(c) with derivative
f ′(g(c)). (We are assuming that g(c) is in the domain of f .) Then, by the chain rule, f ◦ g is differentiable
at c with derivative

(f ◦ g)′ (c) = f ′(g(c)) · g′(c)
Thus the derivative of f ◦ g is obtained by multiplying the derivative of f at g(c) with the derivative of g at
c.

Now consider functions g(u, v) : A ⊆ R2 → R2 and f(x, y) : B ⊆ R2 → R. Assume that g(A) ⊂ B so
that the composition F = f ◦ g is defined. For convenience, assume that g is a function of variables u and v
while f is a function of another set of variables x and y. Since g is from a subset of R2 into R2, it has two
components:

g(u, v) = (g1(u, v), g2(u, v))

Suppose g is differentiable at a point (c, d) ∈ A. Its Jacobian matrix at (c, d) is
∂g1(c, d)

∂u

∂g1(c, d)

∂v

∂g2(c, d)

∂u

∂g2(c, d)

∂v


Suppose, in addition, f is differentiable at g(c, d). Its Jacobian matrix at g(c, d) is(

∂f(g(c, d))

∂x

∂f(g(c, d))

∂y

)
According to the chain rule for functions of several variables, F = f ◦ g is differentiable at (c, d) and its

Jacobian matrix
(

∂F (c, d)

∂u

∂F (c, d)

∂v

)
at (c, d) is given by

(
∂F (c, d)

∂u

∂F (c, d)

∂v

)
=

(
∂f(g(c, d))

∂x

∂f(g(c, d))

∂y

)
∂g1(c, d)

∂u

∂g1(c, d)

∂v

∂g2(c, d)

∂u

∂g2(c, d)

∂v

 (1)

In other words, the Jacobian matrix for F = f ◦ g is the product of the two Jacobian matrices for f and g
in that order. Since (1) is a product of matrices and matrix multiplication is not commutative, the order of
the product is important.
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Example 1 Let f(x, y) = x2 − y2 and g(u, v) = (u cos v, u sin v). Form the composition F (u, v) = f ◦ g.
Consider the point (2, π3 ) in R

2. The Jacobian matrix for g at (2, π3 ) is cos π3 −2 sin π3

sin π3 2 cos π3

 =

 1
2 −

√
3

√
3
2 1


and the Jacobian matrix for f at (1,

√
3), (i.e. at g(2, π3 )), is(

2 −2
√
3
)

By the chain rule, the Jacobian matrix of F = f ◦ g at (2, π3 ) is

(
2 −2

√
3
) 1

2 −
√
3

√
3
2 1

 =
(
−2 −4

√
3
)

This implies that f ◦ g(2+h, π3 + k)− f ◦ g (2,
π
3 ) ' −2h− 4

√
3k and the error in this approximation shrinks

to 0 faster than ||(h, k)||.

Since we have the formulas for f and g, we may calculate the Jacobian matrix directly. Indeed

F (u, v) = f ◦ g (u, v) = f (u cos v, u sin v) = u2 cos 2v

Therefore
∂F (u, v)

∂u
= 2u cos 2v and

∂F (u, v)

∂v
= −2u2 sin 2v, hence the Jacobian matrix of the composition

at (2, π3 )is(
∂F (2, π3 )

∂u

∂F (2, π3 )

∂v

)
=
(
2(2) cos 2π3 −2(2)2 sin 2π3

)
=
(
−2 −4

√
3
)

In general, the Jacobian matrix of F = f ◦ g at an arbitrary point (u, v) is

(
2u cos v −2u sin v

) cos v −u sin v

sin v u cos v

 =
(
2u cos2 v − 2u sin2 v −4u cos v sin v

)

=
(
2u cos 2v −2u sin 2v

)
Standard Notation

Let g(u, v) : A ⊆ R2 → R2 and f(x, y) : B ⊆ R2 → R be given functions with g(A) ⊆ B, so that the
composition F = f ◦ g is defined. Since g is a function from R2 into R2, it has two components, therefore
we may write it as

g(u, v) = (g1(u, v), g2(u, v))

Using formula (1), the Jacobian matrix of F = f ◦ g at (u, v) is

(
∂F (u, v)

∂u

∂F (u, v)

∂v

)
=

(
∂f(g(u, v))

∂x

∂f(g(u, v))

∂y

)
∂g1(u, v)

∂u

∂g1(u, v)

∂v

∂g2(u, v)

∂u

∂g2(u, v)

∂v


Since g1(u, v) replaces x and g2(u, v) replaces y when we form the composition f ◦ g, it is standard practice

to write x = g1(u, v), y = g2(u, v) and f(g(u, v)) = f(x, y). Consequently
∂g1(u, v)

∂u
is written as

∂x

∂u
and
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∂g1(c, d)

∂v
as

∂x

∂v
. Similarly,

∂g2(u, v)

∂u
and

∂g2(u, v)

∂v
are written as

∂y

∂u
and

∂y

∂v
respectively. Consequently,

the above matrix equation is written as

(
∂F (u, v)

∂u

∂F (u, v)

∂v

)
=

(
∂f(x, y)

∂x

∂f(x, y)

∂y

)
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


or simply (

∂F

∂u

∂F

∂v

)
=

(
∂f

∂x

∂f

∂y

)
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


The next pill may be hard to swallow; instead of regarding f ◦ g(u, v) as a new function F (u, v), the practice

is to write it as f(u, v). Then its Jacobian matrix is written as
(

∂f(u, v)

∂u

∂f(u, v)

∂v

)
instead of(

∂F (u, v)

∂u

∂F (u, v)

∂v

)
. Thus, instead of writing

(
∂F (u, v)

∂u

∂F (u, v)

∂v

)
=

(
∂f

∂x

∂f

∂y

)
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


it is common practice to write

(
∂f(u, v)

∂u

∂f(u, v)

∂v

)
=

(
∂f

∂x

∂f

∂y

)
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


or simply (

∂f

∂u

∂f

∂v

)
=

(
∂f

∂x

∂f

∂y

)
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


This is multiplied out to get

∂f

∂u
=

∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

∂f

∂v
=

∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

and it is generally called the chain rule for a function of two variables.

Example 2 Let f(x, y) be a given function and g(r, θ) = (r cos θ, r sin θ). Form the composition F (r, θ) =

f(g(r, θ)). Write x = r cos θ and y = r sin θ. Then
∂F

∂r
and

∂F

∂θ
are given by

∂F

∂r
=

∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
= cos θ

∂f

∂x
+ sin θ

∂f

∂y

∂F

∂θ
=

∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
= −r sin θ∂f

∂x
+ r cos θ

∂f

∂y
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Higher order partial derivatives are obtained by repeated differentiation. For example

∂2F

∂r2
=

∂

∂r

(
∂F

∂r

)
=

∂

∂r

(
cos θ

∂f

∂x
+ sin θ

∂f

∂y

)
= cos θ

∂

∂r

(
∂f

∂x

)
+ sin θ

∂

∂r

(
∂f

∂y

)

Remember that
∂f

∂x
is an abbreviation for

∂f(g(r, θ))

∂x
, therefore

∂

∂r

(
∂f

∂x

)
is evaluated the same way we

evaluated
∂

∂r
f(g(r, θ)). The result is

∂

∂r

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂x

)
∂x

∂r
+

∂

∂y

(
∂f

∂x

)
∂y

∂r
=

(
∂2f

∂x2

)
cos θ +

(
∂2f

∂y∂x

)
sin θ

Similarly,
∂

∂r

(
∂f

∂y

)
=

∂

∂x

(
∂f

∂y

)
∂x

∂r
+

∂

∂y

(
∂f

∂y

)
∂y

∂r
=

(
∂2f

∂x∂y

)
cos θ +

(
∂2f

∂y2

)
sin θ

Therefore

∂2F

∂r2
= cos θ

[(
∂2f

∂x2

)
cos θ +

(
∂2f

∂y∂x

)
sin θ

]
+ sin θ

[(
∂2f

∂x∂y

)
cos θ +

(
∂2f

∂y2

)
sin θ

]

=

(
∂2f

∂x2

)
cos2 θ + 2

(
∂2f

∂y∂x

)
sin θ cos θ +

(
∂2f

∂y2

)
sin2 θ

To determine
∂2F

∂θ2
, one has to compute

∂

∂θ

(
∂F

∂θ

)
=

∂

∂θ

(
−r sin θ∂f

∂x
+ r cos θ

∂f

∂y

)
. By the product rule

∂

∂θ

(
−r sin θ∂f

∂x
+ r cos θ

∂f

∂y

)
= −r cos θ∂f

∂x
− r sin θ ∂

∂θ

(
∂f

∂x

)
− r sin θ∂f

∂y
+ r cos θ

∂

∂θ

(
∂f

∂y

)
We now calculate the partial derivatives of

∂f

∂x
and

∂f

∂y
with respect to θ the same way we calculated their

partial derivatives with respect to r.

∂

∂θ

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂x

)
∂x

∂θ
+

∂

∂y

(
∂f

∂x

)
∂y

∂θ
=

(
∂2f

∂x2

)
(−r sin θ) +

(
∂2f

∂y∂x

)
(r cos θ)

and
∂

∂θ

(
∂f

∂y

)
=

∂

∂x

(
∂f

∂y

)
∂x

∂θ
+

∂

∂y

(
∂f

∂y

)
∂y

∂θ
=

(
∂2f

∂x∂y

)
(−r sin θ) +

(
∂2f

∂y2

)
(r cos θ)

Therefore

∂2F

∂θ2
= −r ∂f

∂x
cos θ − r sin θ

[(
∂2f

∂x2

)
(−r sin θ) +

(
∂2f

∂y∂x

)
(r cos θ)

]
− r ∂f

∂y
sin θ

+r cos θ

[(
∂2f

∂x∂y

)
(−r sin θ) +

(
∂2f

∂y2

)
(r cos θ)

]
This may be reduced to

∂2F

∂θ2
= −r

[
∂f

∂x
cos θ +

∂f

∂y
sin θ

]
+ r2

(
∂2f

∂x2

)
sin2 θ − 2r2

(
∂2f

∂x∂y

)
sin θ cos θ + r2

(
∂2f

∂y2

)
cos2 θ

The chain rule extends to more general functions in the obvious way. Thus let g : A ⊆ Rp → Rq and
f : B ⊆ Rq → Rm be given functions such that g(A) ⊆ B so that the composition f ◦ g is defined. If
g is differentiable at a point c = (c1, . . . , cp) in its domain g and f is differentiable at g(c) then f ◦ g is
differentiable at c and its derivative is related to the derivatives of f and g by the following identity:

D (f ◦ g) (c)h = Df(g(c)) ◦Dg(c)h.

In particular:

4



Let the Jacobian matrix for g at c be

∂g1(c)

∂u1
. . .

∂g1(c)

∂up

...
...

...

∂gq(c)

∂u1
. . .

∂gq(c)

∂up


Let the Jacobian matrix for f at g(c) be

∂f1(g(c))

∂x1
. . .

∂f1(g(c))

∂xq

...
...

...

∂fm(g(c))

∂x1
. . .

∂fm(g(c))

∂xq


Then the Jacobian matrix for f ◦ g at c is

∂f1(g(c))

∂x1
. . .

∂f1(g(c))

∂xq

...
...

...

∂fm(g(c))

∂x1
. . .

∂fm(g(c))

∂xq





∂g1(c)

∂u1
. . .

∂g1(c)

∂up

...
...

...

∂gq(c)

∂u1
. . .

∂gq(c)

∂up


Therefore

D (f ◦ g) (c)h =



∂f1(g(c))

∂x1
. . .

∂f1(g(c))

∂xq

...
...

...

∂fm(g(c))

∂x1
. . .

∂fm(g(c))

∂xq





∂g1(c)

∂u1
. . .

∂g1(c)

∂up

...
...

...

∂gq(c)

∂u1
. . .

∂gq(c)

∂up




h1

...

hp



Exercise 3 Let f : A ⊆ R2 → R be a given function. Consider the composition F = f ◦ g for each given
function g : R2 → R2 then determine expressions for Fu, Fv, Fuv, Fvv and Fuu .

1. g(u, v) = (3u− 5v, 7u+ 6v) .

2. g(u, v) = (−v + lnu, u+ ln v).

Mean Value Theorem

Theorem 4 Let f(x, y) be a differentiable function from a subset of R2 into R. Assume that the line segment
` joining (a1, a2) and (b1, b2) is in the domain of f . Denote (b1, b2)− (a1, a2) by (h, k). Then there is a point
(c1, c2) on ` such that

f (b1, b2)− f (a1, a2) = Df (c1, c2) (h, k) = hfx (c1, c2) + kfy (c1, c2)
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We prove the theorem by restricting f to points on `. This essentially gives us a function of one variable
to which we may apply the Mean Value theorem for a function of one variable. To this end, note that the
points on ` have the form (a1, a2) + t (h, k) = (a1 + th, a2 + tk) where 0 ≤ t ≤ 1. Indeed, when t = 0 the
expression (a1 + th, a2 + tk) reduces to (a1, a2) and when t = 1 it simplifies to (b1, b2). The values of t
between 0 and 1 generate points on ` in between the two end points. Now consider the function

g(t) = f(a1 + th, a2 + tk)

It is the composition of the two differentiable functions f and u(t) = (a1 + th, a2 + tk). Further more, it is
a function of one variable ṫ that satisfies the two conditions

g(0) = f (a1, a2) and g(1) = f (b1, b2)

By the mean value theorem for a function of one variable, there is a number θ between 0 and 1 such that

g(1)− g(0) = g′(θ) (1− 0)

Denote u(θ) = (a1 + θh, a2 + θk) by (c1, c2). Since g(t) = f ◦ u(t), the chain rule implies that

g′(θ) (1− 0) = Df(c1, c2) ◦Du(θ) (1− 0) =
(
fx(c1, c2) fy(c1, c2)

) h

k


= hfx(c1, c2) + kfy(c1, c2)

The extension to functions of three or more variables is straight-forward. For example, if f(x, y, z) is a
differentiable function of three variables from a subset of R3 into R and the line segment ` joining points
(a1, a2, a3) and (b1, b2, b3) is in the domain of f then there is a point (c1, c2, c3) on ` such that

f (b1, b2, b3)− f (a1, a2, a3) = (b1 − a1)fx (c1, c2, c3) + (b2 − a2) fy (c1, c2, c3) + (b3 − a3) fz (c1, c2, c3)

As you will soon find out, the Mean Value Theorem is a powerful theoretical tool that is used in many
situations.
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