

Derivative of a Composition

It may be necessary, for various reasons, to change variables in a given function. For example, one may change from Cartesian coordinates (x, y) to polar coordinates (r, θ) in a function like

$$f(x, y) = x^2 - y^2.$$

The polar and Cartesian coordinates are related by the equations

$$x = r \cos \theta \quad \text{and} \quad y = r \sin \theta$$

therefore such a change would give a new function

$$F(r, \theta) = r^2 (\cos^2 \theta - \sin^2 \theta) = r^2 \cos 2\theta$$

which may be more convenient to handle than f , (since it involves one term $r^2 \cos 2\theta$). Note that $F(r, \theta)$ is really a composition of $f(x, y)$ with $g(r, \theta) = (r \cos \theta, r \sin \theta)$.

This section introduces a formula for the derivative of a composition $f \circ g$ in terms of the derivatives of f and g . It turns out to be a generalization of the expression for the derivative of a composition of functions of one variable. To revisit that formula, let f and g be functions of one variable. Suppose g is differentiable at a point c in its domain with derivative $g'(c)$. Furthermore, suppose f is differentiable at $g(c)$ with derivative $f'(g(c))$. (We are assuming that $g(c)$ is in the domain of f .) Then, by the chain rule, $f \circ g$ is differentiable at c with derivative

$$(f \circ g)'(c) = f'(g(c)) \cdot g'(c)$$

Thus the derivative of $f \circ g$ is obtained by multiplying the derivative of f at $g(c)$ with the derivative of g at c .

Now consider functions $g(u, v) : A \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $f(x, y) : B \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$. Assume that $g(A) \subset B$ so that the composition $F = f \circ g$ is defined. For convenience, assume that g is a function of variables u and v while f is a function of another set of variables x and y . Since g is from a subset of \mathbb{R}^2 into \mathbb{R}^2 , it has two components:

$$g(u, v) = (g_1(u, v), g_2(u, v))$$

Suppose g is differentiable at a point $(c, d) \in A$. Its Jacobian matrix at (c, d) is

$$\begin{pmatrix} \frac{\partial g_1(c, d)}{\partial u} & \frac{\partial g_1(c, d)}{\partial v} \\ \frac{\partial g_2(c, d)}{\partial u} & \frac{\partial g_2(c, d)}{\partial v} \end{pmatrix}$$

Suppose, in addition, f is differentiable at $g(c, d)$. Its Jacobian matrix at $g(c, d)$ is

$$\begin{pmatrix} \frac{\partial f(g(c, d))}{\partial x} & \frac{\partial f(g(c, d))}{\partial y} \end{pmatrix}$$

According to the chain rule for functions of several variables, $F = f \circ g$ is differentiable at (c, d) and its Jacobian matrix $\begin{pmatrix} \frac{\partial F(c, d)}{\partial u} & \frac{\partial F(c, d)}{\partial v} \end{pmatrix}$ at (c, d) is given by

$$\begin{pmatrix} \frac{\partial F(c, d)}{\partial u} & \frac{\partial F(c, d)}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f(g(c, d))}{\partial x} & \frac{\partial f(g(c, d))}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1(c, d)}{\partial u} & \frac{\partial g_1(c, d)}{\partial v} \\ \frac{\partial g_2(c, d)}{\partial u} & \frac{\partial g_2(c, d)}{\partial v} \end{pmatrix} \quad (1)$$

In other words, the Jacobian matrix for $F = f \circ g$ is the product of the two Jacobian matrices for f and g in that order. Since (1) is a product of matrices and matrix multiplication is not commutative, the order of the product is important.

Example 1 Let $f(x, y) = x^2 - y^2$ and $g(u, v) = (u \cos v, u \sin v)$. Form the composition $F(u, v) = f \circ g$. Consider the point $(2, \frac{\pi}{3})$ in \mathbb{R}^2 . The Jacobian matrix for g at $(2, \frac{\pi}{3})$ is

$$\begin{pmatrix} \cos \frac{\pi}{3} & -2 \sin \frac{\pi}{3} \\ \sin \frac{\pi}{3} & 2 \cos \frac{\pi}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & 1 \end{pmatrix}$$

and the Jacobian matrix for f at $(1, \sqrt{3})$, (i.e. at $g(2, \frac{\pi}{3})$), is

$$(2 \quad -2\sqrt{3})$$

By the chain rule, the Jacobian matrix of $F = f \circ g$ at $(2, \frac{\pi}{3})$ is

$$(2 \quad -2\sqrt{3}) \begin{pmatrix} \frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & 1 \end{pmatrix} = (-2 \quad -4\sqrt{3})$$

This implies that $f \circ g(2 + h, \frac{\pi}{3} + k) - f \circ g(2, \frac{\pi}{3}) \simeq -2h - 4\sqrt{3}k$ and the error in this approximation shrinks to 0 faster than $\|(h, k)\|$.

Since we have the formulas for f and g , we may calculate the Jacobian matrix directly. Indeed

$$F(u, v) = f \circ g(u, v) = f(u \cos v, u \sin v) = u^2 \cos 2v$$

Therefore $\frac{\partial F(u, v)}{\partial u} = 2u \cos 2v$ and $\frac{\partial F(u, v)}{\partial v} = -2u^2 \sin 2v$, hence the Jacobian matrix of the composition at $(2, \frac{\pi}{3})$ is

$$\left(\frac{\partial F(2, \frac{\pi}{3})}{\partial u} \quad \frac{\partial F(2, \frac{\pi}{3})}{\partial v} \right) = (2(2) \cos \frac{2\pi}{3} \quad -2(2)^2 \sin \frac{2\pi}{3}) = (-2 \quad -4\sqrt{3})$$

In general, the Jacobian matrix of $F = f \circ g$ at an arbitrary point (u, v) is

$$\begin{aligned} (2u \cos v \quad -2u \sin v) \begin{pmatrix} \cos v & -u \sin v \\ \sin v & u \cos v \end{pmatrix} &= (2u \cos^2 v - 2u \sin^2 v \quad -4u \cos v \sin v) \\ &= (2u \cos 2v \quad -2u \sin 2v) \end{aligned}$$

Standard Notation

Let $g(u, v) : A \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $f(x, y) : B \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$ be given functions with $g(A) \subseteq B$, so that the composition $F = f \circ g$ is defined. Since g is a function from \mathbb{R}^2 into \mathbb{R}^2 , it has two components, therefore we may write it as

$$g(u, v) = (g_1(u, v), g_2(u, v))$$

Using formula (1), the Jacobian matrix of $F = f \circ g$ at (u, v) is

$$\left(\frac{\partial F(u, v)}{\partial u} \quad \frac{\partial F(u, v)}{\partial v} \right) = \left(\frac{\partial f(g(u, v))}{\partial x} \quad \frac{\partial f(g(u, v))}{\partial y} \right) \begin{pmatrix} \frac{\partial g_1(u, v)}{\partial u} & \frac{\partial g_1(u, v)}{\partial v} \\ \frac{\partial g_2(u, v)}{\partial u} & \frac{\partial g_2(u, v)}{\partial v} \end{pmatrix}$$

Since $g_1(u, v)$ replaces x and $g_2(u, v)$ replaces y when we form the composition $f \circ g$, it is standard practice to write $x = g_1(u, v)$, $y = g_2(u, v)$ and $f(g(u, v)) = f(x, y)$. Consequently $\frac{\partial g_1(u, v)}{\partial u}$ is written as $\frac{\partial x}{\partial u}$ and

$\frac{\partial g_1(c, d)}{\partial v}$ as $\frac{\partial x}{\partial v}$. Similarly, $\frac{\partial g_2(u, v)}{\partial u}$ and $\frac{\partial g_2(u, v)}{\partial v}$ are written as $\frac{\partial y}{\partial u}$ and $\frac{\partial y}{\partial v}$ respectively. Consequently, the above matrix equation is written as

$$\begin{pmatrix} \frac{\partial F(u, v)}{\partial u} & \frac{\partial F(u, v)}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f(x, y)}{\partial x} & \frac{\partial f(x, y)}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

or simply

$$\begin{pmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

The next pill may be hard to swallow; instead of regarding $f \circ g(u, v)$ as a new function $F(u, v)$, the practice is to write it as $f(u, v)$. Then its Jacobian matrix is written as $\begin{pmatrix} \frac{\partial f(u, v)}{\partial u} & \frac{\partial f(u, v)}{\partial v} \end{pmatrix}$ instead of $\begin{pmatrix} \frac{\partial F(u, v)}{\partial u} & \frac{\partial F(u, v)}{\partial v} \end{pmatrix}$. Thus, instead of writing

$$\begin{pmatrix} \frac{\partial F(u, v)}{\partial u} & \frac{\partial F(u, v)}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

it is common practice to write

$$\begin{pmatrix} \frac{\partial f(u, v)}{\partial u} & \frac{\partial f(u, v)}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

or simply

$$\begin{pmatrix} \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

This is multiplied out to get

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$$

$$\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$$

and it is generally called the chain rule for a function of two variables.

Example 2 Let $f(x, y)$ be a given function and $g(r, \theta) = (r \cos \theta, r \sin \theta)$. Form the composition $F(r, \theta) = f(g(r, \theta))$. Write $x = r \cos \theta$ and $y = r \sin \theta$. Then $\frac{\partial F}{\partial r}$ and $\frac{\partial F}{\partial \theta}$ are given by

$$\frac{\partial F}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y}$$

$$\frac{\partial F}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} = -r \sin \theta \frac{\partial f}{\partial x} + r \cos \theta \frac{\partial f}{\partial y}$$

Higher order partial derivatives are obtained by repeated differentiation. For example

$$\frac{\partial^2 F}{\partial r^2} = \frac{\partial}{\partial r} \left(\frac{\partial F}{\partial r} \right) = \frac{\partial}{\partial r} \left(\cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y} \right) = \cos \theta \frac{\partial}{\partial r} \left(\frac{\partial f}{\partial x} \right) + \sin \theta \frac{\partial}{\partial r} \left(\frac{\partial f}{\partial y} \right)$$

Remember that $\frac{\partial f}{\partial x}$ is an abbreviation for $\frac{\partial f(g(r, \theta))}{\partial x}$, therefore $\frac{\partial}{\partial r} \left(\frac{\partial f}{\partial x} \right)$ is evaluated the same way we evaluated $\frac{\partial}{\partial r} f(g(r, \theta))$. The result is

$$\frac{\partial}{\partial r} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \frac{\partial y}{\partial r} = \left(\frac{\partial^2 f}{\partial x^2} \right) \cos \theta + \left(\frac{\partial^2 f}{\partial y \partial x} \right) \sin \theta$$

Similarly,

$$\frac{\partial}{\partial r} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \frac{\partial y}{\partial r} = \left(\frac{\partial^2 f}{\partial x \partial y} \right) \cos \theta + \left(\frac{\partial^2 f}{\partial y^2} \right) \sin \theta$$

Therefore

$$\begin{aligned} \frac{\partial^2 F}{\partial r^2} &= \cos \theta \left[\left(\frac{\partial^2 f}{\partial x^2} \right) \cos \theta + \left(\frac{\partial^2 f}{\partial y \partial x} \right) \sin \theta \right] + \sin \theta \left[\left(\frac{\partial^2 f}{\partial x \partial y} \right) \cos \theta + \left(\frac{\partial^2 f}{\partial y^2} \right) \sin \theta \right] \\ &= \left(\frac{\partial^2 f}{\partial x^2} \right) \cos^2 \theta + 2 \left(\frac{\partial^2 f}{\partial y \partial x} \right) \sin \theta \cos \theta + \left(\frac{\partial^2 f}{\partial y^2} \right) \sin^2 \theta \end{aligned}$$

To determine $\frac{\partial^2 F}{\partial \theta^2}$, one has to compute $\frac{\partial}{\partial \theta} \left(\frac{\partial F}{\partial \theta} \right) = \frac{\partial}{\partial \theta} \left(-r \sin \theta \frac{\partial f}{\partial x} + r \cos \theta \frac{\partial f}{\partial y} \right)$. By the product rule

$$\frac{\partial}{\partial \theta} \left(-r \sin \theta \frac{\partial f}{\partial x} + r \cos \theta \frac{\partial f}{\partial y} \right) = -r \cos \theta \frac{\partial f}{\partial x} - r \sin \theta \frac{\partial}{\partial \theta} \left(\frac{\partial f}{\partial x} \right) - r \sin \theta \frac{\partial f}{\partial y} + r \cos \theta \frac{\partial}{\partial \theta} \left(\frac{\partial f}{\partial y} \right)$$

We now calculate the partial derivatives of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ with respect to θ the same way we calculated their partial derivatives with respect to r .

$$\frac{\partial}{\partial \theta} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \frac{\partial x}{\partial \theta} + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \frac{\partial y}{\partial \theta} = \left(\frac{\partial^2 f}{\partial x^2} \right) (-r \sin \theta) + \left(\frac{\partial^2 f}{\partial y \partial x} \right) (r \cos \theta)$$

and

$$\frac{\partial}{\partial \theta} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \frac{\partial x}{\partial \theta} + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \frac{\partial y}{\partial \theta} = \left(\frac{\partial^2 f}{\partial x \partial y} \right) (-r \sin \theta) + \left(\frac{\partial^2 f}{\partial y^2} \right) (r \cos \theta)$$

Therefore

$$\begin{aligned} \frac{\partial^2 F}{\partial \theta^2} &= -r \frac{\partial f}{\partial x} \cos \theta - r \sin \theta \left[\left(\frac{\partial^2 f}{\partial x^2} \right) (-r \sin \theta) + \left(\frac{\partial^2 f}{\partial y \partial x} \right) (r \cos \theta) \right] - r \frac{\partial f}{\partial y} \sin \theta \\ &\quad + r \cos \theta \left[\left(\frac{\partial^2 f}{\partial x \partial y} \right) (-r \sin \theta) + \left(\frac{\partial^2 f}{\partial y^2} \right) (r \cos \theta) \right] \end{aligned}$$

This may be reduced to

$$\frac{\partial^2 F}{\partial \theta^2} = -r \left[\frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta \right] + r^2 \left(\frac{\partial^2 f}{\partial x^2} \right) \sin^2 \theta - 2r^2 \left(\frac{\partial^2 f}{\partial x \partial y} \right) \sin \theta \cos \theta + r^2 \left(\frac{\partial^2 f}{\partial y^2} \right) \cos^2 \theta$$

The chain rule extends to more general functions in the obvious way. Thus let $g : A \subseteq \mathbb{R}^p \rightarrow \mathbb{R}^q$ and $f : B \subseteq \mathbb{R}^q \rightarrow \mathbb{R}^m$ be given functions such that $g(A) \subseteq B$ so that the composition $f \circ g$ is defined. If g is differentiable at a point $c = (c_1, \dots, c_p)$ in its domain g and f is differentiable at $g(c)$ then $f \circ g$ is differentiable at c and its derivative is related to the derivatives of f and g by the following identity:

$$D(f \circ g)(c)h = Df(g(c)) \circ Dg(c)h.$$

In particular:

Let the Jacobian matrix for g at c be

$$\begin{pmatrix} \frac{\partial g_1(c)}{\partial u_1} & \cdots & \frac{\partial g_1(c)}{\partial u_p} \\ \vdots & \vdots & \vdots \\ \frac{\partial g_q(c)}{\partial u_1} & \cdots & \frac{\partial g_q(c)}{\partial u_p} \end{pmatrix}$$

Let the Jacobian matrix for f at $g(c)$ be

$$\begin{pmatrix} \frac{\partial f_1(g(c))}{\partial x_1} & \cdots & \frac{\partial f_1(g(c))}{\partial x_q} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m(g(c))}{\partial x_1} & \cdots & \frac{\partial f_m(g(c))}{\partial x_q} \end{pmatrix}$$

Then the Jacobian matrix for $f \circ g$ at c is

$$\begin{pmatrix} \frac{\partial f_1(g(c))}{\partial x_1} & \cdots & \frac{\partial f_1(g(c))}{\partial x_q} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m(g(c))}{\partial x_1} & \cdots & \frac{\partial f_m(g(c))}{\partial x_q} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1(c)}{\partial u_1} & \cdots & \frac{\partial g_1(c)}{\partial u_p} \\ \vdots & \vdots & \vdots \\ \frac{\partial g_q(c)}{\partial u_1} & \cdots & \frac{\partial g_q(c)}{\partial u_p} \end{pmatrix}$$

Therefore

$$D(f \circ g)(c)h = \begin{pmatrix} \frac{\partial f_1(g(c))}{\partial x_1} & \cdots & \frac{\partial f_1(g(c))}{\partial x_q} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m(g(c))}{\partial x_1} & \cdots & \frac{\partial f_m(g(c))}{\partial x_q} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1(c)}{\partial u_1} & \cdots & \frac{\partial g_1(c)}{\partial u_p} \\ \vdots & \vdots & \vdots \\ \frac{\partial g_q(c)}{\partial u_1} & \cdots & \frac{\partial g_q(c)}{\partial u_p} \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_p \end{pmatrix}$$

Exercise 3 Let $f : A \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$ be a given function. Consider the composition $F = f \circ g$ for each given function $g : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ then determine expressions for F_u, F_v, F_{uv}, F_{vv} and F_{uu} .

1. $g(u, v) = (3u - 5v, 7u + 6v)$.
2. $g(u, v) = (-v + \ln u, u + \ln v)$.

Mean Value Theorem

Theorem 4 Let $f(x, y)$ be a differentiable function from a subset of \mathbb{R}^2 into \mathbb{R} . Assume that the line segment ℓ joining (a_1, a_2) and (b_1, b_2) is in the domain of f . Denote $(b_1, b_2) - (a_1, a_2)$ by (h, k) . Then there is a point (c_1, c_2) on ℓ such that

$$f(b_1, b_2) - f(a_1, a_2) = Df(c_1, c_2)(h, k) = h f_x(c_1, c_2) + k f_y(c_1, c_2)$$

We prove the theorem by restricting f to points on ℓ . This essentially gives us a function of one variable to which we may apply the Mean Value theorem for a function of one variable. To this end, note that the points on ℓ have the form $(a_1, a_2) + t(h, k) = (a_1 + th, a_2 + tk)$ where $0 \leq t \leq 1$. Indeed, when $t = 0$ the expression $(a_1 + th, a_2 + tk)$ reduces to (a_1, a_2) and when $t = 1$ it simplifies to (b_1, b_2) . The values of t between 0 and 1 generate points on ℓ in between the two end points. Now consider the function

$$g(t) = f(a_1 + th, a_2 + tk)$$

It is the composition of the two differentiable functions f and $u(t) = (a_1 + th, a_2 + tk)$. Further more, it is a function of one variable t that satisfies the two conditions

$$g(0) = f(a_1, a_2) \text{ and } g(1) = f(b_1, b_2)$$

By the mean value theorem for a function of one variable, there is a number θ between 0 and 1 such that

$$g(1) - g(0) = g'(\theta)(1 - 0)$$

Denote $u(\theta) = (a_1 + \theta h, a_2 + \theta k)$ by (c_1, c_2) . Since $g(t) = f \circ u(t)$, the chain rule implies that

$$\begin{aligned} g'(\theta)(1 - 0) &= Df(c_1, c_2) \circ Du(\theta)(1 - 0) = \begin{pmatrix} f_x(c_1, c_2) & f_y(c_1, c_2) \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} \\ &= hf_x(c_1, c_2) + kf_y(c_1, c_2) \end{aligned}$$

The extension to functions of three or more variables is straight-forward. For example, if $f(x, y, z)$ is a differentiable function of three variables from a subset of \mathbb{R}^3 into \mathbb{R} and the line segment ℓ joining points (a_1, a_2, a_3) and (b_1, b_2, b_3) is in the domain of f then there is a point (c_1, c_2, c_3) on ℓ such that

$$f(b_1, b_2, b_3) - f(a_1, a_2, a_3) = (b_1 - a_1)f_x(c_1, c_2, c_3) + (b_2 - a_2)f_y(c_1, c_2, c_3) + (b_3 - a_3)f_z(c_1, c_2, c_3)$$

As you will soon find out, the Mean Value Theorem is a powerful theoretical tool that is used in many situations.