
Formula for a derivative

We used the tangent plane to the graph of a function f of 2 variables to argue that the linear map

L(h, k) = fx(c, d)h+ fy(c, d)k

approximates f(c+ h, d+ k)− f(c, d) very well when h and k are small. It can be shown, with the help of
the Mean Value Theorem, that if the partial derivatives fx (x, y) and fy (x, y) are continuous at (c, d) then
indeed.

lim
||(h,k)||→0

|f(c+ h, d+ k)− f(c, d)− L(h, k)|
||(h, k)|| = 0

Therefore if f has continuous partial derivatives then its derivative at (c, d) has formula

Df(c, d)(h, k) = hfx (c, d) + kfy (c, d) (1)

In matrix form, it is

Df(c, d)(h, k) =
(
fx (c, d) fy (c, d)

) h

k


The 1× 2 matrix

(
fx (c, d) fy (c, d)

)
is called the Jacobian matrix for f at (c, d) .

Exercise 1

1. Use formula (1) to determine Df(c, d)(h, k) given f and point (c, d):

(a) f(x, y) = 4− 3xy2, (i) (2,−1), (ii) (x, y) (b) f(x, y) = x2y2 + 3x3 − 4y3, (i) (1,−2), (ii) (x, y)

(c) f(x, y) = 1 +
x

y
− y

2

x
, (i) (−1, 3), (ii) (x, y) (d) 2x sin y − y2 cos 2x at (i)

(
π
6 ,

π
4

)
, (ii) (x, y)

(e) f(x, y) =
3

xy
− y

2

x2
, (i) (1, 1), (ii) (x, y) (f) f(x, y) = (2x+ 3y) ln (e+ xy), (i) (0, 1), (ii) (x, y)

The Derivative of a Function from a Subset of R2 into R2

A function from a subset of R2 into R2 assigns a pair of real numbers to every pair of real numbers in its
domain. Examples:

(1) f(x, y) =
(
x2y, x+ y3

)
(2) f(x, y) =

(
x+ 3y2, x2 − 4y3

)
(3) f(x, y) =

(
x sin y, y2exy

)
We cannot draw the graph of such a function f : A ⊆ R2 → R2 in our 3-dimensional space, there-

fore we skip the part about a tangent plane and define it to be differentiable at a point (c, d) in its do-
main if f(c + h, d + k) − f(c, d) can be approximated by a linear map L : R2 → R2 such that the norm
||f(c+ h, d+ k)− f(c, d)− L(h, k)|| of the error term is small compared to ||(h, k)||. More precisely,

Definition 2 A function f : A ⊆ R2 → R2 is differentiable at a point (c, d) in its domain if there is a linear
map, denoted by Df(c, d) such that

lim
(h,k)→(0,0)

||f(c+ h, d+ k)− f(c, d)−Df(c, d)(h, k)||
||(h, k)|| = 0

Example 3 Consider the function f(x, y) =
(
x2y, x+ y3

)
. Let (c, d) be a point in R2. Then for any

(h, k) ∈ R2

f(c+ h, d+ k)− f(c, d) =
(
c2k + 2cdh+ 2chk + h2d+ h2k, h+ 3d2k + 3dk2 + k3

)
The terms which are linear in h or k are c2k + 2cdh in the first component and h + 3d2k in the second
component. When we separate them from the non-linear ones we get

f(c+ h, d+ k)− f(c, d) =
(
c2k + 2cdh, h+ 3d2k

)
+
(
2chk + h2d+ h2k, 3dh2 + k3

)
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We have to show that the norm of the error in approximating f(c+h, d+k)−f(c, d) with
(
c2k + 2cdh, h+ 3d2k

)
is small compared to ||(h, k)||. The error is

(
2chk + h2d+ h2k, 3dh2 + k3

)
. Recall the inequalities |h| ≤

||(h, k)||, |k| ≤ ||(h, k)||. Combined with the triangle inequality, they imply that∣∣∣∣(2chk + h2d+ h2k, 3dk2 + k3)∣∣∣∣ ≤ (|2c|) |hk|+ (|d|) |h|2 + |h|2 |k|+ (|3d|) |k|2 + |k|3

≤ (|2c|) ||(h, k)||2 + (|d|) ||(h, k)||2 + ||(h, k)||3 + (|3d|) ||(h, k)||2 + ||(h, k)||3

= (|2c|+ 4 |d|+ 2 ||(h, k)||) ||(h, k)||2

It follows that lim
(h,k)→(0,0)

∣∣∣∣(2chk + h2d+ h2k, 3dk2 + k3)∣∣∣∣
||(h, k)|| ≤ lim

(h,k)→(0,0)
(|2c|+ 4 |d|+ 2 ||(h, k)||) ||(h, k)|| =

0. Therefore f is differentiable at (c, d) and its derivative Df(c, d) has formula

Df(c, d) (h, k) =
(
2cdh+ c2k, h+ 3d2k

)
The Mean Value Theorem may be used to show that if f(x, y) = (f1(x, y), f2(x, y)) and the first order

partial derivatives of f1 and f2 are continuous then the derivative of f at (c, d) has formula

Df(c, d) (h, k) =

(
h
∂f1
∂x

+ k
∂f1
∂y
, h
∂f2
∂x

+ k
∂f2
∂y

)
All the partial derivatives are evaluated at (c, d). If we agree to write

(
h
∂f1
∂x

+ k
∂f1
∂y
, h
∂f2
∂x

+ k
∂f2
∂y

)
not as

a row but as the 2× 1 column matrix 
h
∂f1
∂x

+ k
∂f1
∂y

h
∂f2
∂x

+ k
∂f2
∂y


then the expression for Df(c, d) (h, k) may be written as a matrix product:

Df(c, d) (h, k) =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y



h

k



Following what we did for a function from R2 into R, we call


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 the Jacobian matrix of f

at (c, d) .

Example 4 In Example 3, f1(x, y) = x2y and f2(x, y) = x+ y3. Therefore:

∂f1(c, d)

∂x
= 2cd,

∂f1(c, d)

∂x
= c2,

∂f2(c, d)

∂x
= 1 and

∂f2(c, d)

∂y
= 3d2

It follows that

Df(c, d) (h, k) =

 2cd c2

1 3d2

 h

k


The Jacobian matrix of f at (c, d) is  2cd c2

1 3d2


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It follows that

Df(c, d) (h, k) =

 2cd c2

1 3d2

 h

k


The Jacobian matrix of f at (c, d) is  2cd c2

1 3d2


Example 5 Let f(x, y) = (f1(x, y), f2(x, y)) =

(
x sin y, y2exy

)
. The partial derivatives of f1 and f2 are

∂f1
∂x

= sin y,
∂f1
∂y

= x cos y,
∂f2
∂x

= y3exy and
∂f2
∂y

=
(
2y + y2x

)
exy. They are continuous on R2. Let (c, d) be

a point in R2. Then
∂f1(c, d)

∂x
= sin d,

∂f1(c, d)

∂y
= c cos d,

∂f2(c, d)

∂x
= d3ecd and

∂f2(c, d)

∂y
=
(
2d+ d2c

)
ecd.

Therefore the derivative of f at (c, d) is given by

Df(c, d) (h, k) =

 sin d c cos d

d3ecd
(
2d+ d2c

)
ecd

 h

k



=

 h sin d+ ck cos d

hd3ecd + k
(
2d+ d2c

)
ecd


In general, if (x, y) is any point in R2, then the derivative of f at (x, y) is given by

Df(x, y) (h, k) =

 sin y x cos y

y3exy
(
2y + y2x

)
exy

 h

k



=

 h sin y + xk cos y

hy3exy + k
(
2y + y2x

)
exy


We may also write this as

Df(x, y) (h, k) =
(
h sin y + xk cos y, hy3exy + k

(
2y + y2x

)
exy
)

The Derivative of a Function from a Subset of Rp into Rq

This is a straight-forward generalization of what we have observed so far. To simplify notation, we denote a
point (c1, . . . , cp) in Rp by c. By the same token, (h1, . . . hp) may be written as h and (c1 + h1, . . . , cp + hp)
as c+ h.
Let f : A ⊆ Rp → Rq be a given function and c be a point in its domain. We say that f is differentiable at c

if f(c+h)−f(c) can be approximated by a linear function L(h) such that the error term f(c+h)−f(c)−L(h) is
small compared to ||h||. Note that f(x1, . . . xp) = (f1(x1, . . . xp), . . . , fq(x1, . . . xp)). Thus f has q components
and each component is a function of the p variables x1, . . . xp. It can be shown that if the components

f1, . . . , fq have continuous partial derivatives
∂fi
∂xj

, i = 1, . . . , q and j = 1, . . . , p at c then f is differentiable
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at c and its derivative is given by

Df(c) (h) =



∂f1(c)

∂x1
. . .

∂f1(c)

∂xp

...
...

...

∂fq(c, d)

∂x1
. . .

∂fq(c, d)

∂xp




h1

...

k



The matrix M below is called the Jacobian matrix for f at c.

M =



∂f1(c)

∂x1
. . .

∂f1(c)

∂xp

...
...

...

∂fq(c, d)

∂x1
. . .

∂fq(c, d)

∂xp


Two properties of this matrix you should not miss are:

1. It is a q× p matrix whereas f is a function from Rp into Rq, (in other words, do not miss the reversal).

2. The first row consists of the partial derivatives of f1, (the first component of f), with respect to the p
variables x1, . . . , xp, the second row consists of the partial derivatives of f2, (the second component of
f), with respect to the p variables x1, . . . , xp, and so on.

Exercise 6 Write down Df(x)h as a matrix product for each given function f . In each case, x is an
arbitrary point in the domain of f .

1. f(x1, x2, x3) = (x1x2, x2x3) , h = (h1, h2, h3).

2. f(x1, x2) = (x1 + x2, x1x2, x21 + x
3
2), h = (h1, h2).

3. f(x) = (x2, 3ex, x), h = h

4. f(x1, x2, x3) = x2 sinx1 − x2x3e2x1 , h = (h1, h2, h3).
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