

Formula for a derivative

We used the tangent plane to the graph of a function f of 2 variables to argue that the linear map

$$L(h, k) = f_x(c, d)h + f_y(c, d)k$$

approximates $f(c + h, d + k) - f(c, d)$ very well when h and k are small. It can be shown, with the help of the Mean Value Theorem, that if the partial derivatives $f_x(x, y)$ and $f_y(x, y)$ are continuous at (c, d) then indeed.

$$\lim_{\|(h, k)\| \rightarrow 0} \frac{|f(c + h, d + k) - f(c, d) - L(h, k)|}{\|(h, k)\|} = 0$$

Therefore if f has continuous partial derivatives then its derivative at (c, d) has formula

$$Df(c, d)(h, k) = h f_x(c, d) + k f_y(c, d) \quad (1)$$

In matrix form, it is

$$Df(c, d)(h, k) = \begin{pmatrix} f_x(c, d) & f_y(c, d) \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix}$$

The 1×2 matrix $\begin{pmatrix} f_x(c, d) & f_y(c, d) \end{pmatrix}$ is called the Jacobian matrix for f at (c, d) .

Exercise 1

1. Use formula (1) to determine $Df(c, d)(h, k)$ given f and point (c, d) :

(a) $f(x, y) = 4 - 3xy^2$, (i) $(2, -1)$, (ii) (x, y)	(b) $f(x, y) = x^2y^2 + 3x^3 - 4y^3$, (i) $(1, -2)$, (ii) (x, y)
(c) $f(x, y) = 1 + \frac{x}{y} - \frac{y^2}{x}$, (i) $(-1, 3)$, (ii) (x, y)	(d) $2x \sin y - y^2 \cos 2x$ at (i) $(\frac{\pi}{6}, \frac{\pi}{4})$, (ii) (x, y)
(e) $f(x, y) = \frac{3}{xy} - \frac{y^2}{x^2}$, (i) $(1, 1)$, (ii) (x, y)	(f) $f(x, y) = (2x + 3y) \ln(e + xy)$, (i) $(0, 1)$, (ii) (x, y)

The Derivative of a Function from a Subset of \mathbb{R}^2 into \mathbb{R}^2

A function from a subset of \mathbb{R}^2 into \mathbb{R}^2 assigns a pair of real numbers to every pair of real numbers in its domain. Examples:

$$(1) f(x, y) = (x^2y, x + y^3) \quad (2) f(x, y) = (x + 3y^2, x^2 - 4y^3) \quad (3) f(x, y) = (x \sin y, y^2 e^{xy})$$

We cannot draw the graph of such a function $f : A \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^2$ in our 3-dimensional space, therefore we skip the part about a tangent plane and define it to be differentiable at a point (c, d) in its domain if $f(c + h, d + k) - f(c, d)$ can be approximated by a linear map $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that the norm $\|f(c + h, d + k) - f(c, d) - L(h, k)\|$ of the error term is small compared to $\|(h, k)\|$. More precisely,

Definition 2 A function $f : A \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is differentiable at a point (c, d) in its domain if there is a linear map, denoted by $Df(c, d)$ such that

$$\lim_{(h, k) \rightarrow (0, 0)} \frac{\|f(c + h, d + k) - f(c, d) - Df(c, d)(h, k)\|}{\|(h, k)\|} = 0$$

Example 3 Consider the function $f(x, y) = (x^2y, x + y^3)$. Let (c, d) be a point in \mathbb{R}^2 . Then for any $(h, k) \in \mathbb{R}^2$

$$f(c + h, d + k) - f(c, d) = (c^2k + 2cdh + 2chk + h^2d + h^2k, h + 3d^2k + 3dk^2 + k^3)$$

The terms which are linear in h or k are $c^2k + 2cdh$ in the first component and $h + 3d^2k$ in the second component. When we separate them from the non-linear ones we get

$$f(c + h, d + k) - f(c, d) = (c^2k + 2cdh, h + 3d^2k) + (2chk + h^2d + h^2k, 3dh^2 + k^3)$$

We have to show that the norm of the error in approximating $f(c+h, d+k) - f(c, d)$ with $(c^2k + 2cdh, h + 3d^2k)$ is small compared to $\|(h, k)\|$. The error is $(2chk + h^2d + h^2k, 3dh^2 + k^3)$. Recall the inequalities $|h| \leq \|(h, k)\|$, $|k| \leq \|(h, k)\|$. Combined with the triangle inequality, they imply that

$$\begin{aligned} \|(2chk + h^2d + h^2k, 3dh^2 + k^3)\| &\leq (|2c|)|hk| + (|d|)|h|^2 + |h|^2|k| + (|3d|)|k|^2 + |k|^3 \\ &\leq (|2c|)\|(h, k)\|^2 + (|d|)\|(h, k)\|^2 + \|(h, k)\|^3 + (|3d|)\|(h, k)\|^2 + \|(h, k)\|^3 \\ &= (|2c| + 4|d| + 2\|(h, k)\|)\|(h, k)\|^2 \end{aligned}$$

It follows that $\lim_{(h, k) \rightarrow (0, 0)} \frac{\|(2chk + h^2d + h^2k, 3dh^2 + k^3)\|}{\|(h, k)\|} \leq \lim_{(h, k) \rightarrow (0, 0)} (|2c| + 4|d| + 2\|(h, k)\|)\|(h, k)\| = 0$. Therefore f is differentiable at (c, d) and its derivative $Df(c, d)$ has formula

$$Df(c, d)(h, k) = (2cdh + c^2k, h + 3d^2k)$$

The Mean Value Theorem may be used to show that if $f(x, y) = (f_1(x, y), f_2(x, y))$ and the first order partial derivatives of f_1 and f_2 are continuous then the derivative of f at (c, d) has formula

$$Df(c, d)(h, k) = \left(h \frac{\partial f_1}{\partial x} + k \frac{\partial f_1}{\partial y}, h \frac{\partial f_2}{\partial x} + k \frac{\partial f_2}{\partial y} \right)$$

All the partial derivatives are evaluated at (c, d) . If we agree to write $\left(h \frac{\partial f_1}{\partial x} + k \frac{\partial f_1}{\partial y}, h \frac{\partial f_2}{\partial x} + k \frac{\partial f_2}{\partial y} \right)$ not as a row but as the 2×1 column matrix

$$\begin{pmatrix} h \frac{\partial f_1}{\partial x} + k \frac{\partial f_1}{\partial y} \\ h \frac{\partial f_2}{\partial x} + k \frac{\partial f_2}{\partial y} \end{pmatrix}$$

then the expression for $Df(c, d)(h, k)$ may be written as a matrix product:

$$Df(c, d)(h, k) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix}$$

Following what we did for a function from \mathbb{R}^2 into \mathbb{R} , we call $\begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix}$ the Jacobian matrix of f at (c, d) .

Example 4 In Example 3, $f_1(x, y) = x^2y$ and $f_2(x, y) = x + y^3$. Therefore:

$$\frac{\partial f_1(c, d)}{\partial x} = 2cd, \quad \frac{\partial f_1(c, d)}{\partial y} = c^2, \quad \frac{\partial f_2(c, d)}{\partial x} = 1 \quad \text{and} \quad \frac{\partial f_2(c, d)}{\partial y} = 3d^2$$

It follows that

$$Df(c, d)(h, k) = \begin{pmatrix} 2cd & c^2 \\ 1 & 3d^2 \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix}$$

The Jacobian matrix of f at (c, d) is

$$\begin{pmatrix} 2cd & c^2 \\ 1 & 3d^2 \end{pmatrix}$$

It follows that

$$Df(c, d)(h, k) = \begin{pmatrix} 2cd & c^2 \\ 1 & 3d^2 \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix}$$

The Jacobian matrix of f at (c, d) is

$$\begin{pmatrix} 2cd & c^2 \\ 1 & 3d^2 \end{pmatrix}$$

Example 5 Let $f(x, y) = (f_1(x, y), f_2(x, y)) = (x \sin y, y^2 e^{xy})$. The partial derivatives of f_1 and f_2 are $\frac{\partial f_1}{\partial x} = \sin y$, $\frac{\partial f_1}{\partial y} = x \cos y$, $\frac{\partial f_2}{\partial x} = y^3 e^{xy}$ and $\frac{\partial f_2}{\partial y} = (2y + y^2 x) e^{xy}$. They are continuous on \mathbb{R}^2 . Let (c, d) be a point in \mathbb{R}^2 . Then $\frac{\partial f_1(c, d)}{\partial x} = \sin d$, $\frac{\partial f_1(c, d)}{\partial y} = c \cos d$, $\frac{\partial f_2(c, d)}{\partial x} = d^3 e^{cd}$ and $\frac{\partial f_2(c, d)}{\partial y} = (2d + d^2 c) e^{cd}$. Therefore the derivative of f at (c, d) is given by

$$\begin{aligned} Df(c, d)(h, k) &= \begin{pmatrix} \sin d & c \cos d \\ d^3 e^{cd} & (2d + d^2 c) e^{cd} \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} \\ &= \begin{pmatrix} h \sin d + ck \cos d \\ hd^3 e^{cd} + k(2d + d^2 c) e^{cd} \end{pmatrix} \end{aligned}$$

In general, if (x, y) is any point in \mathbb{R}^2 , then the derivative of f at (x, y) is given by

$$\begin{aligned} Df(x, y)(h, k) &= \begin{pmatrix} \sin y & x \cos y \\ y^3 e^{xy} & (2y + y^2 x) e^{xy} \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} \\ &= \begin{pmatrix} h \sin y + xk \cos y \\ hy^3 e^{xy} + k(2y + y^2 x) e^{xy} \end{pmatrix} \end{aligned}$$

We may also write this as

$$Df(x, y)(h, k) = (h \sin y + xk \cos y, hy^3 e^{xy} + k(2y + y^2 x) e^{xy})$$

The Derivative of a Function from a Subset of \mathbb{R}^p into \mathbb{R}^q

This is a straight-forward generalization of what we have observed so far. To simplify notation, we denote a point (c_1, \dots, c_p) in \mathbb{R}^p by c . By the same token, (h_1, \dots, h_p) may be written as h and $(c_1 + h_1, \dots, c_p + h_p)$ as $c + h$.

Let $f : A \subseteq \mathbb{R}^p \rightarrow \mathbb{R}^q$ be a given function and c be a point in its domain. We say that f is differentiable at c if $f(c+h) - f(c)$ can be approximated by a linear function $L(h)$ such that the error term $f(c+h) - f(c) - L(h)$ is small compared to $\|h\|$. Note that $f(x_1, \dots, x_p) = (f_1(x_1, \dots, x_p), \dots, f_q(x_1, \dots, x_p))$. Thus f has q components and each component is a function of the p variables x_1, \dots, x_p . It can be shown that if the components f_1, \dots, f_q have continuous partial derivatives $\frac{\partial f_i}{\partial x_j}$, $i = 1, \dots, q$ and $j = 1, \dots, p$ at c then f is differentiable

at c and its derivative is given by

$$Df(c)(h) = \begin{pmatrix} \frac{\partial f_1(c)}{\partial x_1} & \cdots & \frac{\partial f_1(c)}{\partial x_p} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_q(c, d)}{\partial x_1} & \cdots & \frac{\partial f_q(c, d)}{\partial x_p} \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ k \end{pmatrix}$$

The matrix M below is called the Jacobian matrix for f at c .

$$M = \begin{pmatrix} \frac{\partial f_1(c)}{\partial x_1} & \cdots & \frac{\partial f_1(c)}{\partial x_p} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_q(c, d)}{\partial x_1} & \cdots & \frac{\partial f_q(c, d)}{\partial x_p} \end{pmatrix}$$

Two properties of this matrix you should not miss are:

1. It is a $q \times p$ matrix whereas f is a function from \mathbb{R}^p into \mathbb{R}^q , (in other words, do not miss the reversal).
2. The first row consists of the partial derivatives of f_1 , (the first component of f), with respect to the p variables x_1, \dots, x_p , the second row consists of the partial derivatives of f_2 , (the second component of f), with respect to the p variables x_1, \dots, x_p , and so on.

Exercise 6 Write down $Df(x)h$ as a matrix product for each given function f . In each case, x is an arbitrary point in the domain of f .

1. $f(x_1, x_2, x_3) = (x_1 x_2, x_2 x_3)$, $h = (h_1, h_2, h_3)$.
2. $f(x_1, x_2) = (x_1 + x_2, x_1 x_2, x_1^2 + x_2^3)$, $h = (h_1, h_2)$.
3. $f(x) = (x^2, 3e^x, x)$, $h = h$
4. $f(x_1, x_2, x_3) = x_2 \sin x_1 - x_2 x_3 e^{2x_1}$, $h = (h_1, h_2, h_3)$.