Derivatives of a Function of Several Variables

To move smoothly from derivatives of functions of one variable to derivatives of function of several variables,
it is necessary to recast derivatives as linear maps. But what is a linear map? We start with the easiest one,
namely a linear map from R into R. It is a function whose graph is a straight line through the origin.
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Figure (i). Graph of some linear function L : R — R

Therefore it has a formula L(z) = ma where m is a constant. Clearly, it satisfies the following two conditions:
for any real numbers z and y,

L(z+y)=L(z)+ L(y) and if ¢ is a constant then  L(cx) = cL(x)

These are the very conditions used to define an arbitrary linear map. Thus, climbing one dimension higher,
a function L from R? into R is called a linear map if, for all pairs (h, k) and (z,y) in R? and any constant c,

L((h. k) + (2,y)) = L(h, k) + L(z,y) and L(c(z,y)) = cL(z,y)

It turns out that the graph of such a function is a plane that pass through the origin (0,0, 0) and its formula
has the form
L(z,y) = ax + by

where a and b are constants. This may be written as a product of the row matrix ( a b ) and the
x
column matrix , that is
Y
T

L(x,y)zaa:+by:(a b)
Y

The 1 X 2 matrix < a b ) is called the matrix of L, (in the standard bases for R? and R).
Example 1 Let L(z,y) = 3z — 2y. Then L is a linear map since

L((h,k)+ (z,y)) = Lh+z,y+k)=3(h+x)—2y+k)=3h—2k)+ (3z —2y)

L(h,k) + L(z,y)

and
L(e(z,y)) = L(cz, cy) = 3cx — 2cy = ¢ (3x — 2y) = cL(x,y)

It has a 1 X 2 matrix which is ( 3 —2 )



Going up one dimension higher in the range, a function L from R? into R? is linear if, for all pairs (h, k)

and (x,y) in R? and any constant c,
L((h, k) + (z,y)) = L(h, k) + L(z, y)
be defined by L(z,y) = (4x + 3y, =5z +y). Then L is linear since

and L(c(z,y)) = cL(x,y)

Example 2 Let L : R? — R?

L((h,k) + (z,y)) = Lh+z,k+y)=@h+z)+3k+y),-5h+z)+(k+vy)

(4h + 3k, —5h + k) + (4z + 3y, =5z + y) = L(h, k) + L(z,y)

and
L(c(z,y)) = L(cx, cy) = (4dex + 3cy, —bex + cy) = c(dx + 3y, —bx +y) = cL(x,y)

In general, a linear map L : R? — R? has the form
L(z,y) = (ax + by, cx + dy)
where a, b, ¢ and d are constants. If we agree to write the image (ax + by, cx + dy) as a column

ax + by

cx + dy

instead of the row ( ax + by cx + dy ) then L(z,y) is the matrix product

a b x
L(z,y) =
c d Y
a b
is called the matrix for L, (in the standard bases for

As you would expect, the 2 X 2 matrix
c d

R?).
Example 3 The linear map in Example 2 may be written in the matriz product form as
4 3 T
L(‘T, y) -
) 1 Y
4 3
Its matrix is
-5 1

Now consider a function f(z) of one variable and a point ¢ in its domain. Intuitively, f has a derivative
at ¢ if we can draw a tangent to its graph at (¢, f(¢)). The slope of the tangent is the number

B) —
o) = i 1R =10
and its equation is
T(x) = (z—c) f'(c) + f(c).



As the figure below shows, when z is close to ¢, the point (z, f(x)) on the graph of f is close to the point
(z,T(x)) on the tangent line.
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Figure (ii). (=, f(x)) is close to (x,T(z))

Therefore
fx) =T(z) = (x —c) f'(c) + f(e) (1)

It is convenient to write x as ¢ = ¢ + h and to subtract f(c) from both sides of (1). The result is

fle+h) = f(e) = hf'(c)

This says that the difference f(c+ h) — f(c¢) can be approximated by the linear map L(h) = f'(c)h. The
error in the approximation is the number

fle+h) = f(e) = hf'(c)

To get an idea of how small it is, we appeal to a Taylor’s theorem which asserts that there is a number 6
between ¢ and ¢ + h such that

fleth) = f(e)+hf'(c) + 3.1 (O)h?

Therefore the error term is f(c+ h) — f(c) — hf’(c) = 1 f”()h*. When h is small, (with an absolute value
less than 1), then h? is much smaller than h. Therefore the error term is very much smaller than h. In fact

it is so much smaller than h that

lim lerror term)| _o.
h—0 |h‘

These observations suggest that we may recast the differentiability of a function of one variable as follows:

Definition 4 A function f: A CR — R is differentiable at a point ¢ € A if f(c+h) — f(c) can be approxi-
mated by a linear map L(h), in such a way that when h is close to zero, the error term |f(c+ h) — f(¢) — L(h)]
is small compared to h. More precisely, f is differentiable at c if there is a linear map L such that

o e h) = £(0) - 1w

h—0 h =0

When convenient, we will call L in Definition 4 the linear approximator of f(c+ h) — f(c) at c.

Definition 5 The linear approzimator of f(c+ h) — f(c) is called the derivative of f at ¢ and it is denoted
by Df(c).

One may read D f(c) as "the derivative of f at ¢". This notation has the advantage of pointing out that
the linear approximator depends on the point ¢ in the domain of f.



Example 6 Let f(z) = 23 —42?+1 and ¢ = —1. The tangent to its graph at (—1,—4) has slope f'(—1) = 11.
Therefore the linear approzimator of f(—1+ h) — f(=1) at x = —1 is Df(—1) with formula

Df(=1)(h) = 11h.

We can verify directly that the error |f(—1+ h) — f(=1) — Df(=1)(h)| in the approximation is small com-
pared to h. For

F(=14+h) —f(=1) = [(-14+h)*—4(=1+h)*+1]—[(-1)* —4(=1)* +1]
h® —4h? + 11h

Therefore the error in approximation is |h3 —4h% 4+ 11h — 11h| = |h3 - 4h2| and

| —an?
lim ———— = lim |h® — 4h| = 0.
h—0  |h h—0
If we choose a different point, say ¢ = 4, we are bound to get a different approximator, because the tangent at
the new point need not be parallel to the tangent at ¢ = —1. Indeed the linear approzimator of f(4+h)— f(4)
at © =4 is Df(4) with formula Df(4)(h) = 12h, (since f'(4) = 12). In general, the linear approximator of
fx+h)— f(x) atx is Df(x) with formula

Df(z)(h) = (3z% — 8z)h

Derivative of a Real Valued Function of Two Variables

At the intuitive level, a real valued function g of one variable is differentiable at a point b if we can draw
a tangent line to its graph at (b, f(b)). The graph of a function of one variable is a curve. When we climb
one step higher to functions of two variables, we find that the graph of a real valued function f(z,y) is a
surface in space; which suggests that a tangent line to a curve should be upgraded to a tangent plane to a
surface. Therefore f should be differentiable at a point (¢, d) if we can draw a tangent plane to its graph at
(¢, d,d(c,d)).

Figure (iii). A tangent plane at P(c,d, f(c,d))

To go beyond the intuitive definition of a differentiable function g of one variable, we determined the equation
of the tangent at (b, f(b)) and used it to deduce that g is differentiable at b if the expression f(b+ h) — f(b)



can be approximated by a linear mapping. We have to do the same for a function of two variables; i.e.
we have to determine the equation of the tangent plane at (c,d, f(c,d)) and see what it suggests. To this
end, consider the curves c¢1(z) = (z,d, f(z,d)) and ca2(y) = (¢,y, f(c,y)), (shown in the figure below), in
the graph of f. They both pass through (c,d, f(c,d)). Furthermore, every tangent vector to ¢; and every
tangent vector to cq at (¢, d, f(c,d)) is in the tangent plane.

Figure (iv). Curves c¢; and co

In particular, the tangent vector u =< 1,0, fz(c,d) > to ¢; and the tangent vector v =< 0,1, f,(c,d) > to
co at (e, d, f(e,d)) are in the tangent plane. Therefore their cross product

i K
uxv=|1 0 fm(cvd) :_fz(c7d)i_fy(cvd)j+k

0 1 fy(c,d)

is a normal to the tangent plane. We now have enough information to determine the equation of the tangent
plane at (¢, d, f(c,d)) and it is given by

(=) (=fale,d) + (y = d) (= fy(e, d)) + (2 = f(e,d)) (1) = 0

This may be written as
2z, y) = (x = ¢) fule,d) + (y — d) fy(c,d) + f(c,d)

When (z,y) is close to (¢, d), the point R (x,y, f(z,y)) in the graph of f is close to the point @ (z,y, z(x,y))
in the plane, (see the figure below obtained by rotating figure (iii) to show @ and R ), therefore

f(@,y) = 2(z,y) = (x = ¢) fa(e,d) + (y — d) fy(e, d) + f(e,d). (2)
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We may rearrange (2) as
f(a,y) = fle,d) = (x = ¢) fale,d) + (y — d) fy(c,d)
For convenience, write (z,y) = (¢+ h,d + k) where h =z — c and k =y — d. Then
fle+h,d+k)— f(c,d) = folc,d)h + fy(c,d)k
Thus the difference f(c + h,d + k) — f(c,d) can be approximated by the linear map L(h, k) with formula
L(h,k) = fz(c,d)h + fy(c,d)k (3)

In order for this observation to be a generalization of the differentiability of a function of one variable, we
should demand that the error f(c+ h,d+ k) — f(¢,d) — L(h, k) is small compared to ||(h, k)|| when (h, k) is
close to (0,0). This suggests the following definition:

Definition 7 Let f : A C R? — R be a given function and (c,d) € A. We say that f is differentiable at
(c,d) if there is a linear map L : R? — R such that

|fle+h,d+Ek)— f(c,d) — L(h, k)]

lim =0.
(h,k)—(0,0) l[(h, E)]|

L is is called the derivative of f at (c,d) and it is denoted by D f(c,d).

Example 8 Let f(x,y) = 22 + 3zy + y? and (c,d) = (1,2). Take a point (c+ h,d+k) = (1 +h,2+k). It
turns out that
f(A4+h24+k)— f(1,2) = 8h + Tk + h* + 3hk + k2.

The linear term in (8h + 7k) + (h? + 3hk + k) is 8h + Tk. We have to verify that when (h,k) is close to
(0,0), the error term h% + 3hk + k? is small compared to ||(h,k)||. By the triangle inequality,

|B? + 31k + k?| < B* + 3 (|h]) ([K]) + &

To go beyond this, simply note that |h| < Vh2 + k2 and |k| < Vh? + k2. Therefore

|h2 + 3hk + k2| < h? +3 (\/h2 n k2> (\/h2 n k2) + k2 =4 (K2 + k2) = 41|(h, k)|
This implies that

. |fle+hd+ k)= f(e,d) = Lo (h, k)| Al R)P
lim < lim —F——
(h,k)—(0,0) [[(h, B)l (h.k)—(0,0) |[|(h, K)||

=0.



Therefore f is differentiable at (1,2) and Df(1,2) has formula
DF(1,2)(h, k) = 8h + Tk

In matriz form

h
Df(1,2)(h,k) = ( 8 7 ) ( ) ) = 8h + Tk

In general, take an arbitrary point (c,d) and consider the expression f (c+ h,d+ k) — f (c,d). It simplifies
as

flc+h,d+k)—f(c,d) = (2c+3d)h+ (3c+2d) k + 3hk + h? + k* (4)
The linear term in the right hand side of (4) is (2c+ 3d) h + (3¢ + 2d) k. The error term is 3hk + h? + k*
and we have already shown that when (h, k) is close to (0,0), it is small compared to ||(h, k)||, therefore f is
differentiable at (c,d) with derivative

Df(c,k) (h, k) = (2¢+ 3d) h+ (3¢ + 2d) k

In matriz form

h
Df(c,k:)(h,k):(2c+3d 3c+2d)( ):(2c+3d)h+(3c+2d)k

k
As expected, 2¢ + 3d = f,(c,d) and 3c+2d = f, (c,d) .
Exercise 9 For each function f, (i) Evaluate f(c+ h,d + k) — f(c,d); (ii) Determine Df(c,k)(h,k) ; and

. : |f(C+h,d+k)—f(C,d)—Df(C,k)(h,k)|_
(i11) Verify that (h,k%lin(o,o) TN =0.

(a) f(z,y) = zy* + 322 (b) flx,y) =2® +day® —y (¢) flz,y) =4z +3y—7



