
Integration by Partial Fractions

Say you have to determine
∫ (

1

1− x +
1

1 + x

)
dx. You would immediately integrate each term:

∫ (
1

1− x +
1

1 + x

)
dx = − ln |1− x|+ ln |1 + x|+ c = ln

∣∣∣∣1 + x1− x

∣∣∣∣+ c
However,

1

1− x +
1

1 + x
=

2

1− x2 ,

therefore you could have been asked, instead, to determine
∫

2

1− x2 dx. In this form, you would probably
try a substitution like x = sinu, to get∫

2

1− x2 dx = 2
∫
cosu

cos2 u
du = 2

∫
secudu = 2 ln |secu+ tanu|+ c

You would have to do some extra work to express 2 ln |secu+ tanu|+ c in terms of x. Example:

2

∫
secudu = 2 ln |secu+ tanu|+ c = 2 ln

∣∣∣∣ 1√
1− x2

+
x√
1− x2

∣∣∣∣+ c
= 2 ln

∣∣∣∣ 1 + x√
1− x2

∣∣∣∣+ c = 2 ln ∣∣∣∣√1 + x√
1− x

∣∣∣∣+ c = ln ∣∣∣∣1 + x1− x

∣∣∣∣+ c
A more complicated integral like ∫

4x+ 2

(x2 − 1) (x+ 2)dx

may not yield to the familiar substitutions we have encountered. But

4x+ 2

(x2 − 1) (x+ 2) =
1

x+ 1
− 2

x− 1 +
3

x+ 2

and if the integral is given, instead, as∫ (
1

x+ 1
− 2

x− 1 +
3

x+ 2

)
dx

you would easily handle it. These examples suggest that given an integral of a rational function, it may be
a good idea to split the integrand into partial fractions then integrate. Techniques of decomposing rational
functions into partial fractions are developed in most pre-calculus textbooks. Here we consider only a few
typical examples.

Example 1 To determine
∫

x

(1− x) (x− 3) (x+ 2)dx, we split the integrand as

x

(1− x) (x− 3) (x+ 2) =
A

1− x +
B

x− 3 +
C

x+ 2

where A, B and C are constants. Solving gives A = − 16 , B = −
3
10 and C =

2
15 . Therefore∫

x

(1− x) (x− 3) (x+ 2)dx = −1
6

∫
1

1− xdx−
3

10

∫
1

x− 3dx+
2

15

∫
1

x+ 2
dx

= 1
6 ln |1− x| −

3
10 ln |x− 3|+

2
15 ln |x+ 2|+ c

1



Example 2 To determine
∫

1

(1− x) (x+ 2)2
dx, we split the integrand as

1

(1− x) (x+ 2)2
=

A

1− x +
B

x+ 2
+

C

(x+ 2)
2

where A, B and C are constants. Solving gives A = 1
9 , B =

1
9 and C =

1
3 . Therefore∫

1

(1− x) (x+ 2)2
dx =

1

9

∫
1

1− xdx+
1

9

∫
1

x+ 2
dx+

1

3

∫
1

(x+ 2)
2 dx

= 1
9 ln

∣∣∣∣x+ 21− x

∣∣∣∣− 1

3 (x+ 2)
+ c

Example 3 To determine
∫

6

(2x2 + 1) (x− 1)dx, we split the integrand as

6

(2x2 + 1) (x− 1) =
Ax+B

2x2 + 1
+

C

x− 1

where A, B and C are constants. Solving for A, B and C yields A = B = −4 and C = 2. Write

6dx

(2x2 + 1) (x− 1) as −
4x

2x2 + 1
− 4

2x2 + 1
+

2

x− 1 . Then∫
6dx

(2x2 + 1) (x− 1) = −
∫

4xdx

2x2 + 1
− 4

∫
dx

2x2 + 1
+ 2

∫
dx

x− 1

= − ln
(
2x2 + 1

)
− 4√

2
arctan

√
2x+ 2 ln |x− 1|+ c

Exercise 4

1. Integrate by partial fractions. In part (b), k is a non-zero constant.

(a)
∫

xdx

(x− 1) (x+ 2) b)
∫

dx

x2 − k2 (c)
∫

dx

x2 (x+ 1)

(d)
∫ (

4x2 + 6x− 3
)
dx

x3 + 2x2 − 3x e)
∫
(x− 2) dx
x2 (x− 1)2

(f)
∫

x2dx

x4 − 16

(g)
∫

dx

x+
√
x− 2 , (Let u =

√
x.) h)

∫
dx

x2 (x2 + 2)
(i)
∫

x

2x+ 3
√
x+ 1

2. If the degree of the numerator of a rational integrand is not less than the degree of the denominator, first
do a long division to get a numerator of lower degree than that of the denominator. For example,given∫
x3 + x2 − 3
x2 − 1 dx, we first do a long division to get

x3 + x2 − 3
x2 − 1 = x+ 1 +

x− 2
x2 − 1

We then split
x− 2
x2 − 1 into partial fractions. The result is

x− 2
x2 − 1 =

x− 2
(x− 1) (x+ 1) =

3

2 (x+ 1)
− 1

2 (x− 1)

2



Therefore ∫
x3 + x2 − 3
x2 − 1 dx =

∫ (
x+ 1 +

3

2 (x+ 1)
− 1

2 (x− 1)

)
dx

= 1
2x

2 + x+ 3
2 ln |x+ 1| −

1
2 ln |x− 1|+ c

Determine the following in a similar way

a)
∫

x3 + x+ 1

(x+ 1) (x− 3)dx b)
∫

x4

x3 − 1dx c)
∫
x4 + 1

x4 − 1dx d)
∫
x3 − 1
x3 + 1

dx

The substitution t = tan x
2

The substitution t = tan x2 enables us to write sinx and cosx as rational functions of the new variable t.
We are then able to transform an integrand involving rational functions of cosx and sinx into an integrand
involving rational functions of t. The latter integrand may be split into partial fractions which we know how
to handle. The following are the details for re[placing sinx and cosx by rational expressions involving t.
Let t = tan x2 . The figure below shows a right triangle with such an angle

x
2 .

Its hypotenuse has length
√
1 + t2, therefore sin x2 =

t√
1 + t2

and cos x2 =
1√
1 + t2

. We now appeal to the

trigonometric identities sinx = 2 sin x2 cos
x
2 and cosx = cos

2 x
2 − sin

2 x
2 to write sinx and cosx in terms of

t. The result is

sinx = 2

(
t√
1 + t2

)(
1√
1 + t2

)
=

2t

1 + t2
,

and

cosx =

(
1√
1 + t2

)2
−
(

t√
1 + t2

)2
=
1− t2
1 + t2

The change of variables also demands that we replace dx by an expression involving dt. Since
dt

dx
= 1

2 sec
2 x
2 ,

we proceed to solve for dx and the result is

dx =
dt

1
2 sec

2 x
2

= 2
(
cos2 x2

)
dt =

(
2

1 + t2

)
dt.

Example 5 To determine
∫

1

2− 2 sinx+ cosxdx using the substitution t = tan
x
2 .

Let t = tan x2 . Then, as shown above,

sinx =
2t

1 + t2
, cosx =

1− t2
1 + t2

and dx =

(
2

1 + t2

)
dt.

Therefore the integral becomes∫
1

2− 2 sinx+ cosxdx =
∫ (

1

2− 4t
1+t2 +

1−t2
1+t2

)(
2

1 + t2

)
dt

3



The expression

(
1

2− 4t
1+t2 +

1−t2
1+t2

)(
2

1 + t2

)
simplifies to

2

t2 − 4t+ 3 =
2

(t− 1) (t− 3) . We may split

this into partial fractions and the result is

2

(t− 1) (t− 3) =
1

t− 3 −
1

t− 1 .

Therefore ∫
1

2− 2 sinx+ cosxdx =

∫ (
1

t− 3 −
1

t− 1

)
dt = ln |t− 3| − ln |t− 1|

= ln
∣∣tan x2 − 3∣∣− ln ∣∣tan x2 − 1∣∣+ c

Say we have to evaluate
∫ π/3

0

1

2− 2 sinx+ cosxdx. We would note that when x = 0, t = 0 and when

x = π
3 , t = tan(

π
6 ) =

1√
3
. Therefore

∫ π/3

0

1

2− 2 sinx+ cosxdx =
[
ln

∣∣∣∣ t− 3t− 1

∣∣∣∣]1/
√
3

0

= ln

∣∣∣∣∣
√
3− 3√
3− 1

∣∣∣∣∣− ln 3
The expression

∣∣∣∣∣
√
3− 3√
3− 1

∣∣∣∣∣ may be simplified to 4+√3, (rationalize the denominator then cancel common
factors). Then the above result may be reduced to ln

(
4 +
√
3

3

)
.

Exercise 6

1. Use the substitution t = tan x2 to show that
∫ π/2

0

1

1 + sinx+ cosx
dx = ln 2.

2. Use the substitution t = tan x2 to determine:

(a)
∫

1

1 + cosx
dx

(b)
∫ π/2

π/3

1

1 + sinx
dx

(c)
∫

sinx

(1 + sinx)
2 dx

(d)
∫

cosx

(1 + sinx)
2 dx

4


