

More General Limits

In order to prove a number of results we use in this course, one must have a precise definition of a limit. So far we have considered the limit as h approaches 0 of the special quotient

$$\frac{f(x+h) - f(x)}{h}.$$

To determine it, you had to answer the question: *what single number is close to all the values you get when you substitute numbers h close to 0 into the expression $\frac{f(x+h) - f(x)}{h}$?* The answer to this question is the derivative of f at x , denoted by $f'(x)$. Now we are going to ask the following more general question:

*Let g be a given function and c be a given real number. Suppose you choose different numbers x **close**, (but not equal) to c and determine the corresponding values $g(x)$. Is there a single number l that is **close** to all such values?*

If the answer is YES, then l is called the limit of $g(x)$ as x approaches c . This intuitive definition of a limit suffices to introduce derivatives of the trigonometric and the exponential functions. The precise definition is addressed later on.

Example 1 Consider the function g with formula $g(x) = \frac{6x+6}{x^3+1}$, $x \neq -1$. Although $g(-1)$ is not defined, we can evaluate $g(x)$ for all the numbers x "close" to -1 . The table below gives a sample of such values.

x	-1.5	-1.1	-1.002	-1.0001	-0.9998	-0.999	-0.9	-0.56
$\frac{6x+6}{x^3+1}$	1.26	1.81	1.996	1.9998	2.0004	2.002	2.21	3.202

It appears that every number x that is sufficiently close to -1 gives a value $g(x)$ close to 2, therefore $g(x)$ should have limit 2 as x approaches -1 . We can actually defend this claim more rigorously as follows: A number x close to -1 has the form $x = -1 + h$ where h is close to 0. (The smaller h is, the closer $x = -1 + h$ is close to -1 .) It gives a value

$$\begin{aligned} g(x) &= g(-1 + h) = \frac{6(-1 + h) + 6}{(-1 + h)^3 + 1} = \frac{-6 + 6h + 6}{-1 + 3h - 3h^2 + h^3 + 1} \\ &= \frac{6h}{3h - 3h^2 + h^3} = \frac{6}{3 - 3h + h^2} \end{aligned}$$

When h is close to 0, (which means that $x = -1 + h$ is close to -1), then $\frac{6}{3 - 3h + h^2}$ is close to $\frac{6}{3 - 0 + 0} = 2$.

Example 2 Let $g(x) = \frac{x^2 - 1}{\sqrt{x-1}}$, $x \neq 1$. Then $g(x)$ has limit 4 as x approaches 1. (Substitute a couple of numbers x close to 1 into $\frac{x^2 - 1}{\sqrt{x-1}}$.) To verify it, note that a number x close to 1 has the form $x = 1 + h$ where h is close to 0. It gives a value

$$g(1 + h) = \frac{(1 + h)^2 - 1}{\sqrt{1 + h} - 1} = \frac{2h + h^2}{\sqrt{1 + h} - 1}$$

You should anticipate rationalizing the denominator to get

$$\begin{aligned} f(1 + h) &= \frac{h(2 + h)(\sqrt{1 + h} + 1)}{(\sqrt{1 + h} - 1)(\sqrt{1 + h} + 1)} = \frac{h(2 + h)(\sqrt{1 + h} + 1)}{1 + h - 1} \\ &= (2 + h)(\sqrt{1 + h} + 1). \end{aligned}$$

Clearly, $(2+h)(\sqrt{1+h}+1)$ is close to $(2+0)(\sqrt{1+0}+1) = 4$ when h is close to 0, hence $g(x)$ has limit 4 as x approaches 1 and we may write $\lim_{x \rightarrow 1} \frac{x^2 - 1}{\sqrt{x} - 1} = 4$.

Exercise 3

1. Let $f(x) = \frac{3-x}{3-\sqrt{x+6}}$. Verify that when x is close to 3 then $f(x)$ is close to 6.

2. Set your calculator in radian mode then use it to complete the following table

h	-1	-0.05	-0.05	-0.006	-0.00005	0.00004	0.008	0.02	0.6	0.9
$\sin h$										
$1 - \cos h$										
$\frac{\sin h}{h}$										
$\frac{1 - \cos h}{h}$										
$\frac{1 - \cos h}{h^2}$										

- (a) What value does the table suggest for $\lim_{h \rightarrow 0} \frac{\sin h}{h}$?
- (b) What value does the table suggest for $\lim_{h \rightarrow 0} \frac{1 - \cos h}{h}$?
- (c) What value does the table suggest for $\lim_{h \rightarrow 0} \frac{1 - \cos h}{h^2}$?
3. Use a calculator to complete the following table then guess $\lim_{h \rightarrow 0} \frac{e^h - 1}{h}$.

h	-0.1	-0.02	-0.007	-0.001	-0.0002	0.00001	0.001	0.008	0.06	0.3
$\frac{e^h - 1}{h}$										