
Integration by Parts

This is essentially the reverse of the product rule for derivatives. Recall that the derivative of a product
f(x)g(x) is

d

dx
(f(x)g(x)) = g(x)

df

dx
+ f(x)

dg

dx
.

We may re-arrange this as

g(x)
df

dx
=
d

dx
(f(x)g(x))− f(x)dg

dx
(1)

Now consider antiderivatives of the terms in (1).

• An antiderivative of g(x) df
dx

is written as
∫
g(x)

df

dx
dx.

• An obvious antiderivative of d
dx
(f(x)g(x)) is f(x)g(x).

• An antiderivative of −f(x)dg
dx

is written as −
∫
f(x)

dg

dx
dx.

Therefore ∫
g(x)

df

dx
dx = f(x)g(x)−

∫
f(x)

dg

dx
dx (2)

This is the formula for integrating by parts. To apply it to an integral
∫
h(x)dx, do the following:

(a) Write h(x) as a product of two functions. Call one of them g(x) and the other one
df

dx
.

(b) Determine f(x) from your knowledge of
df

dx
and differentiate g to get

dg

dx
.

(c) Substitute f(x), g(x),
df

dx
and

dg

dx
into (2).

Your choice of f(x) and g(x) should be such that
∫
f(x)

dg

dx
dx is easier to evaluate than

∫
g(x)

df

dx
dx.

Example 1 To determine
∫
x sinxdx.

We choose g(x) = x and
df

dx
= sinx. Then f(x) = − cosx, (there is no need to introduce a constant of

integration at this stage), and
dg

dx
= 1. Substituting these into (2) gives∫

x sinxdx = −x cosx+
∫
cosxdx = −x cosx+ sinx+ c

Note that the choice g(x) = sinx and
df

dx
= x leads to∫

x sinxdx = 1
2x

2 sinx−
∫

1
2x

2 cosxdx

which is no easier to evaluate than
∫
x sinxdx.

It may be necessary to apply the technique more than once as the next example shows:

Example 2 To determine
∫
x2e2xdx, let g(x) = x2 and

df

dx
= e2x. Then

dg

dx
= 2x and f(x) = 1

2e
2x.

Substituting into (2) gives ∫
x2e2xdx = 1

2x
2e2x −

∫
xe2xdx.
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We have reduced the power of x under the integral sign by 1. To evaluate
∫
xe2xdx, we integrate by parts

a second time. Take g(x) = x and
df

dx
= e2x. (Hopefully, you do not confuse the g(x) in this part of the

solution with the g(x) in the first part.) Then
dg

dx
= 1 and f(x) = 1

2e
2x. Substituting into (2) gives∫

xe2xdx = 1
2xe

2x −
∫

1
2e
2xdx = 1

2xe
2x − 1

4e
2x + c

Therefore
∫
x2e2xdx = 1

2x
2e2x −

(
1
2xe

2x − 1
4e
2x
)
+ c = 1

2e
2x
(
x2 − x+ 1

2

)
+ c.

In the next example, we write the integrand h(x) as h(x) · 1 then choose g(x) = h(x) and df
dx
= 1.

Example 3 To determine
∫
arcsinxdx, choose g(x) = arcsinx and

df

dx
= 1. Then f(x) = x and

dg

dx
=

1√
1− x2

. Therefore ∫
arcsinxdx = x arcsinx−

∫
x√
1− x2

dx.

You should be able to determine
∫

x√
1− x2

dx =

∫
x
(
1− x2

)−1/2
dx by inspection. The result is

∫
arcsinxdx = x arcsinx+

√
1− x2 + c

Exercise 4

1. Integrate
∫
x cosxdx by parts.

2. Integrate
∫
x2 lnxdx by parts.

3. Show that if k 6= −1 and it is a constant then
∫
xk lnxdx = xk+1

k+1

(
lnx− 1

k+1

)
.

4. Use the substitution u = lnx to show that
∫
lnx

x
dx = 1

2 (lnx)
2
+ c.

5. Use the result of Exercises 3 to determine
∫
lnxdx.

6. Determine
∫
arctanxdx.

7. Determine
∫
x arctanxdx. (Hint:

x2

1 + x2
=
1 + x2 − 1
1 + x2

= 1− 1

1 + x2
.)

8. Integrate
∫

x3√
x2 + 1

dx by parts. (Hint: Take g(x) = x2 and
df

dx
=

x√
x2 + 1

. You should be able to

determine f by inspection.)
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9. In some instances, two or more integrations by parts may lead one to an integral involving the given
integrand . One is then able to form an equation involving the given integral and solve for it. For an
example, consider ∫

e2x cosxdx.

Take g(x) = e2x and
df

dx
= cosx. Then

dg

dx
= 2e2x, f(x) = sinx and∫

e2x cosxdx = e2x sinx− 2
∫
e2x sinxdx (3)

The next step is to integrate
∫
e2x sinxdx by parts. Take g(x) = e2x and

df

dx
= sinx. Then

dg

dx
= 2e2x

and f(x) = − cosx, therefore∫
e2x sinxdx = −e2x cosx+

∫
2e2x cosxdx. Substituting into(3) gives

∫
e2x cosxdx = e2x sinx+ 2e2x cosx− 4

∫
e2x cosxdx. In other words,∫

e2x cosxdx = e2x sinx+ 2e2x cosx− 4
∫
e2x cosxdx (4)

Note that the given integral
∫
e2x cosxdx appears in the right hand side. We now solve (4) for the

integral and the result is ∫
e2x cosxdx =

e2x (sinx+ 2 cosx)

5
+ c

Let a and b be constants. Use a similar procedure to:

(a) Determine
∫
e2x sin 3xdx.

(b) Show that
∫
eax sin bxdx =

eax (a sin bx− b cos bx)
a2 + b2

+ c

(c) Show that
∫
eax cos bxdx =

eax (b sin bx+ a cos bx)

a2 + b2
+ c

10. Let n and b be constants. Show that∫
xnebxdx =

xnebx

b
− n
b

∫
xn−1ebxdx. (5)

11. Formula (5) is an example of a reduction formula. Using it enables one to reduce the exponent of x,

hence the term "reduction formula". Let us apply it repeatedly to determine
∫
x3e4xdx . Thus

∫
x3e4xdx =

x3e4x

4
− 3

4

∫
x2e4xdx, (first application)

The second step is to apply it to
∫
x2e4xdx and the result is

∫
x2e4xdx =

x2e4x

4
− 1

2

∫
xe4xdx.

Therefore ∫
x3e4xdx =

x3e4x

4
− 3

4

(
x2e4x

4
− 2

4

∫
xe4xdx

)
=

(
x3

4
− 3x

2

16

)
e4x + 3

8

∫
xe4xdx
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Finally, we apply it to
∫
xe4xdx to get

∫
xe4xdx =

xe4x

4
− 1
4

∫
e4xdx =

xe4x

4
− e

4x

16
+ c

The last integral was determined by inspection. Therefore∫
x3e4xdx =

(
x3

4
− 3x

2

16
+
3x

32
− 3

128

)
e4x + c

Determine
∫
x4e2xdx in a similar way.

12. Use your answer to question 9c above to determine
∫
e5x cos 6xdx.

13. Use the substitution x = u2 to show that
∫
cos
√
xdx = 2

∫
u cosudu. Now integrate by parts to

complete the integration.

14. Consider the integral
∫
cosn xdx where n is a non-zero constant. We may write cosn x as

(
cosn−1 x

)
(cosx).

Now take g(x) = cosn−1 x and
df

dx
= cosx and integrate by parts to get∫

cosn xdx = cosn−1 x sinx+ (n− 1)
∫
cosn−2 x sin2 xdx

Use the identity sin2 x = 1− cos2 x to deduce that∫
cosn xdx =

cosn−1 x sinx

n
+
n− 1
n

∫
cosn−2 xdx (6)

This is another reduction formula which we may use to integrate powers of cosx. For example,∫
cos3 xdx =

cos2 x sinx

3
+
2

3

∫
cosxdx =

cos2 x sinx

3
+
2 sinx

3
+ c

15. Let n be a non-zero constant. Show that∫
sinn xdx = − sin

n−1 x cosx

n
+
n− 1
n

∫
sinn−2 xdx (7)

then use this reduction formula to determine
∫
sin3 xdx.

16. Assume that n is a constant that is not equal to 1. Complete the following exercise to derive the
following reduction formula: ∫

tann xdx =
tann−1 x

n− 1 −
∫
tann−2 xdx (8)

We write tann x as tann−2 x tan2 x. Then∫
tann xdx =

∫
tann−2 x tan2 xdx =

∫
tann−2 x(sec2 x− 1)dx

=

∫
tann−2 x sec2 xdx−

∫
tann−2 xdx

Now integrate
∫
tann−2 x sec2 xdx by inspection, (if you can’t make a substitution u = tanx),

and complete the exercise.
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Use the reduction formula to determine
∫
tan3 xdx. (Remember that

∫
tanxdx = ln |secx|+ c.)

17. Assume that n is a constant that is not equal to 1. Complete the following exercise to derive the
following reduction formula:∫

secn xdx =
secn−2 x tanx

n− 1 +
n− 2
n− 1

∫
secn−2 xdx. (9)

We write secn x as secn−2 x sec2 x. Then
∫
secn xdx =

∫
secn−2 x sec2 xdx. Now integrate by parts.

Use the reduction formula to determine
∫
sec4 xdx.

18. Show that if n 6= −1 then ∫
cotn xdx = −cot

n−1 x

n− 1 −
∫
cotn−2 xdx

19. Show that if n 6= −1 then∫
cscn xdx = −csc

n−1 x cotx

n− 1 +
n− 2
n− 1

∫
cscn−2 xdx

Use the formula to determine
∫
csc3 xdx. (Remember that

∫
cscxdx = − ln |cscx+ cotx|+ c)
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