
Making a Substitution in an Integral

There are integrals which may not yield to integration by inspection. An example is∫ 9

3

x3

(x+ 1)
2 dx.

In such a case, we change to a new variable, a process called "substitution", to convert the unfamiliar integral
into a familiar one.
If you are willing to over-simplify, then making substitution may be likened to "changing" from one unit

of measure into another, (e.g. from miles into kilometers), in a problem of computing areas. For a specific
case, go back to the problem we solved, of determining the area of the piece of land between a straight road
and a river shaped like the graph of the parabola f(x) = x2 + 3, 0 ≤ x ≤ 2, where x is measured in miles.
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Say it is given to an individual who is used to measuring distances in kilometers, and he insists on measuring
distances along the road in kilometers. Then, according to his calculations, the land is between the 0 and
the 16

5 = 3.2 kilometer marks, (because 1 mile is equal to
8
5 kilometers). He proceeds to divide it into small

strips using subintervals [0, u1], [u1, u2], . . . , [un−2, un−1],
[
un−1,

16
5

]
of
[
0, 165

]
, then approximates each strip

with a rectangle as shown below.

ui­1 ui0 3.2

The expression
(
x2 + 3

)
gives the correct height of a rectangle only if x is in miles. Therefore, to calculate

the height of a strip on a typical interval [ui−1, ui], we first have to convert ui kilometers into miles. Since
1 kilometer is 5

8 miles, the height is [(
5ui
8

)2
+ 3

]
miles.

The width and height should be measured in the same units, therefore we must convert the (ui − ui−1)
kilometers for the width into

(
5
8

)
(ui − ui−1) miles. Then the area of the typical rectangle is[(
5ui
8

)2
+ 3
] (

5
8

)
(ui − ui−1) square miles.
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It follows that the area of the piece of land is the limit of the Riemann sums

n∑
i=1

[(
5
8ui
)2
+ 3
]
5
8 (ui − ui−1)

That limit is ∫ 16/5

0

[(
5
8u
)2
+ 3
]
5
8du

We say that we have made a substitution x = 5
8u in the integral∫ 2

0

(
x2 + 3

)
dx.

This boiled down to replacing x by 5
8u and a little bit more. We had to replace interval [0, 2] for the variable

x by [0, 3.2] for the new variable u. We also had to replace dx by 5
8du, a step corresponding to giving the

correct "measures" for the widths of the approximating rectangles. We will call 58 the scaling factor for this

substitution. Note that if we define the function g(u) = 5
8u, then replacing x

2 + 3 by
(
5
8u
)2
+ 3 is simply

forming the composition f ◦ g(u) = f(g(u)). Furthermore, the scaling factor 5
8 is the derivative of g and[

0, 165
]
is the interval that g maps onto [0, 2], (i.e. g(0) = 0 and g( 165 ) = 2). Therefore we have verified that∫ 2

0

f(x)dx =

∫ 16/5

0

f(g(u))g′(u)du

To generalize, let f be a given function and [a, b] be an interval. To make a substitution in the integral∫ b

a

f(x)dx, we do the following:

1. Replace the independent variable x with a new variable u. (We likened this to changing from one set
of units to another.) This amounts to composing f with some suitable function g to get a new function
f(g(u)).

2. Multiply f(g(u)) by a scaling factor which happens to be g′(u).

3. Determine the interval [c, d] that g maps onto [a, b] . Then∫ b

a

f(x)dx =

∫ d

c

f(g(u))g′(u)du (1)

We will soon defend (1). To apply it successfully, one should choose g(u) such that
∫ d

c

f(g(u))g′(u)du can

be determined by inspection. A bad choice for g(u) may give another unfamiliar integral
∫ d

c

f(g(u))g′(u)du.

Example 1 Say we wish to integrate
∫ 4

0

x√
2x+ 1

dx by substitution: The integrand is

f(x) =
x√
2x+ 1

.

We have to compose it with a suitable function g chosen so that f(g(u))g′(u) can be integrated by inspection.
To get it, note that if the denominator of the integrand were

√
u and the numerator was a polynomial in u

then we would divide each term in the numerator by
√
u and proceed to integrate by inspection. Therefore

it is reasonable to look for a function g with the property that when we form the composition f(g(u)),
the expression

√
2x+ 1 becomes

√
u. The choice g(u) =

(
u−1
2

)
does precisely that. (We get it by setting

u = 2x + 1, so that
√
2x+ 1 becomes

√
u, then solve for x in terms of u.) The scaling factor is g′(u) = 1

2 ,
therefore

f(g(u))g′(u) =
1√
u

(
u− 1
2

)
· 12 =

1
4

(
u1/2 − u−1/2

)
2



which we can integrate by inspection. We need the interval that g maps onto [0, 2]. Since g is increasing,
we have to find numbers c and d such that g(c) = 0 and g(d) = 4. They are c = 1 and d = 9, (obtained by
solving u−1

2 = 0 and u−1
2 = 4). Therefore,∫ 4

0

x√
2x+ 1

dx =

∫ 9

1

1
4

(
u1/2 − u−1/2

)
du = 1

4

[
2
3u

3/2 − 2u1/2
]9
1
= 10

3 .

The following are short-cuts that lead to the same result. They are defended ahead.

• Instead of defining g(u) =
(
u− 1
2

)
then form the composition f(g(u)), simply let u = 2x + 1 and

substitute it into the expression
x√
2x+ 1

to get
x√
u
. (In fact if we define g(u) =

(
u− 1
2

)
and form

the composition f (g(u)),
√
2x+ 1 is replaced by

√
u.)

• Differentiate u with respect to x. The result is du
dx

= 2. Now regard
du

dx
as fraction and solve to get

dx = 1
2du. The scaling factor is

1
2 and we replace dx by

1
2du. (We have changed to a new independent

variable u hence the symbol du.) Indeed g′(u) = 1
2 by direct verification.

• Replace the interval [0, 2] with [u(0), u(2)] = [1, 9].

• Then
∫ 2

0

x√
2x+ 1

dx =

∫ 9

1

x

2
√
u
du = 1

2

∫ 9

1

x√
u
du. Since u = 2x+1, replace x with 1

2 (u− 1). Therefore

1
2

∫ 9

1

x√
u
du = 1

2

∫ 9

1

1
2 (u− 1)√

u
du = 1

4

∫ 9

1

(
u1/2 − u−1/2

)
du.

The rest is similar to what we have done above.

In general, to make a substitution in a given integral
∫ b

a

f(x)dx using the short-cuts we do the following:

1. Pick an expression in the formula for f(x) and denote it by u. This is called making a substituting
u = (expression in x). It is a trial and error process. You will know that you have made an incorrect
choice if you do not get a simpler integral after the substitution.

2. Determine u′ =
du

dx
then regard

du

dx
as a fraction with numerator du and denominator dx and solve for

dx to get dx =
1

u′
du. Now replace dx by

1

u′
du.

3. Use the relation u = (expression in x) to get rid of the variable x in the resulting expression f(x)
1

u′
du.

Denote what you get by
(Equivalent expression in the variable u)du.

4. Replace the lower limit a of integration by u(a), (the value of u when x = a) and the upper limit by
u(b), (the value of u when x = b). Then∫ b

a

f(x)dx =

∫ u(b)

u(a)

(Equivalent expression in the variable u)du.

Example 2 To integrate
∫ 3

0

x2
√
5x+ 1dx by substitution, using the short-cuts, we let u = 5x + 1. Then

du

dx
= 5, dx = 1

5du and x =
1
5 (u− 1). Substitute these into f(x)dx = x

2
√
5x+ 1dx to get

f(x)
1

u′
du = 1

5x
2
√
udu = 1

5

[
1
5 (u− 1)

]2√
udu = 1

125

(
u5/2 − 2u3/2 + u1/2

)
du.
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In this case "(Equivalent expression in the variable u)du" is

1
125

(
u5/2 − 2u3/2 + u1/2

)
du.

When x = 0, u = 1 and when x = 3, u = 4, therefore∫ 3

0

x2
√
5x+ 1dx = 1

5

∫ 4

1

[
1
5 (u− 1)

]2√
udu = 1

125

∫ 4

1

(
u5/2 − 2u3/2 + u1/2

)
du

= 1
125

[
2
7u

7/2 − 4
5u

5/2 + 2
3u

3/2
]4
1
= 0.129 (to 3 decimal places).

Justifying the short-cuts

Let
∫ b

a

f(x)dx be a given integral. Say we have picked an expression h(x) in the formula for f(x) and have

defined u = h(x).

• If we choose g = h−1, (the inverse of h) and form the composition f(g(u)), the expression h(x) in the
formula for f is replaced by u.

• Since h(g(u)) = u, the chain rule implies that h′(g(u))g′(u) = 1. Therefore

g′(u) =
1

h′(x)
=
1

u′

It follows that multiplying f(g(u)) by dx =
1

u′
du amounts to introducing the scaling factor g′(u) for

the integral.

• We have to find numbers c and d such that a = g(c) and b = g(d).

The diagram above tells the story. The function g maps the interval [c, d] onto the interval [a, b] in such
a way that g(c) = a and g(d) = b. But by definition, g = h−1. Therefore the equation g(c) = a may
be written as h−1(c) = a, which implies that c = h(a). Similarly, h−1(d) = b implies that d = h(b).

Therefore ∫ b

a

f(x)dx =

∫ u(b)

u(a)

f(g(u))g′(u)du =

∫ u(b)

u(a)

f(g(u))
1

u′
du.

Example 3 To determine
∫ 1

0

x3

(3x+ 2)
2 dx, let u = 3x + 2. Then

du

dx
= 3 and so dx = 1

3du. When x = 0,
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u = 2 and when x = 1, u = 5. Also, x = 1
3 (u− 2), therefore∫ 1

0

x3

(3x+ 2)
2 dx =

∫ 5

2

(u− 2)3

27u2
· 1
3
du =

1

81

∫ 5

2

(
u− 6 + 12

u
− 8

u2

)
du

= 1
81

[
1
2u

2 − 6u+ 12 lnu+ 8

u

]5
2

= 1
81 (12 ln 2.5− 9.9)

Example 4 To determine
∫ 1

0

x5√
x2 + 1

dx, let u = x2 + 1. Then
du

dx
= 2x and so dx =

1

2x
du. When x = 0,

u = 1 and when x = 1, u = 2. Therefore∫ 1

0

x5√
x2 + 1

dx =

∫ 2

1

x5√
u
· 1
2x
du = 1

2

∫ 2

1

x4√
u
du

Since x2 = u− 1, we replace x4 with
(
x2
)2
= (u− 1)2 = u2 − 2u+ 1. Therefore∫ 1

0

x5√
x2 + 1

dx = 1
2

∫ 2

1

u2 − 2u+ 1√
u

du = 1
2

∫ 2

1

(
u3/2 − 2u1/2 + u−1/2

)
du

= 1
2

[
2
5u

5/2 − 4
3u

3/2 + 2u1/2
]2
1
= 7
√
2−8
15 .

Example 5 To determine
∫ (

x2
√
4x+ 1

)
dx, let u = 4x + 1. Then

du

dx
= 4, hence dx = 1

4du. Also

x = 1
4 (u− 1). Therefore∫ (

x2
√
4x+ 1

)
dx =

∫
1
16 (u− 1)

2√
u · du

4
= 1

64

∫ (
u5/2 − 2u3/2 + u1/2

)
du

= 1
64

(
2
7u

7/2 − 4
5u

5/2 + 2
3u

3/2
)
+ c

Thus
∫ (

x2
√
4x+ 1

)
dx = 1

64

(
2
7 (4x+ 1)

7/2 − 4
5 (4x+ 1)

5/2
+ 2

3 (4x+ 1)
3/2
)
+ c

Example 6 To find
∫
tanx

√
secxdx, let u = secx. Then

du

dx
= secx tanx and dx =

du

secx tanx
. The

integral becomes ∫
tanx

√
secxdx =

∫ √
u · du
secx

=

∫ √
u · du

u
=

∫
1√
u
du

= 2u1/2 + c = 2
√
secx+ c.

Example 7 To determine
∫
sin3 x cos4 xdx, let u = cosx. Then

du

dx
= − sinx and dx = − 1

sinx
du. The

integral becomes ∫
sin3 x cos4 xdx = −

∫ (
sin3 x

)
u4 · 1

sinx
du = −

∫ (
sin2 x

)
u4du

To replace the term sin2 x by an expression involving u, we use the trigonometric identity sin2 x = 1 −
cos2 x = 1− u2. Therefore∫

sin3 x cos4 xdx = −
∫ (

1− u2
)
u4xdx =

∫ (
u6 − u4

)
du =

u7

7
− u

5

5
+ c

= 1
7 cos

7 x− 1
5 cos

5 x+ c.
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You should memorize the results of the next two examples.

Example 8 To determine
∫
cotxdx =

∫
cosx

sinx
dx, let u = sinx. Then

du

dx
= cosx and dx =

1

cosx
du.

Therefore ∫
cotxdx =

∫
cosx

sinx
dx =

∫
cosx

u
· 1

cosx
du =

∫
1

u
du = ln |u|+ c = ln |sinx|+ c

I.e.
∫
cotxdx = ln |sinx|+ c

Example 9 To determine
∫
tanxdx =

∫
sinx

cosx
dx, let u = cosx. Then

du

dx
= − sinx and dx = − 1

sinx
du.

Therefore ∫
tanxdx =

∫
sinx

cosx
dx = −

∫
sinx

u sinx
du = −

∫
1

u
du = − ln |u|+ c = ln |secx|+ c

I.e.
∫
tanxdx = ln |secx|+ c

Example 10 To determine
∫

1√
1− 9x2

dx, write
√
1− 9x2 as

√
1− (3x)2. Now the substitution u = 3x

converts the integrand into the familiar function
1√
1− u2

. Therefore let u = 3x. Then
du

dx
= 3 and dx =

du

3
.

The integral becomes∫
1√

1− 9x2
dx = 1

3

∫
1√
1− u2

du = 1
3 arcsinu+ c =

1
3 arcsin 3x+ c

Example 11 To determine
∫

1

1 + 16x2
dx, note that

1

1 + 16x2
=

1

1 + (4x)
2

and the substitution u = 4x converts this into the familiar integrand
1

1 + u2
. Therefore let u = 4x. Then

du

dx
= 4 and dx = 1

4du. The integral becomes∫
1

1 + 16x2
dx = 1

4

∫
1

1 + u2
du

= 1
4 arctanu+ c =

1
4 arctan 4x+ c

Example 12 To determine
∫

1

5 + x2
dx, we look for a substitution that changes x2 into 5u2 so that we may

factor out the 5. The choice x2 = 5u2, which is equivalent to
√
5u = x, does it. We find that

du

dx
=

1√
5
,

hence dx =
√
5du, and the integral becomes∫

1

5 + x2
dx =

∫ √
5

5 (1 + u2)
du =

√
5
5 arctanu+ c =

1√
5
arctan

(
x√
5

)
+ c

Example 13 To determine
∫

1

a2 + b2x2
dx where a and b are non-zero constants, we need a substitution

that changes b2x2 into a2u2, (so we can factor out the a2). The choice b2x2 = a2u2, which is equivalent to

u = bx
a , does precisely that. We get

du

dx
= b

a , hence dx =
a
b du, and the integral becomes∫

1

a2 + b2x2
dx = a

b

∫
1

a2 (1 + u2)
du = 1

ab arctanu+ c =
1
ab arctan

(
bx
a

)
+ c.
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Example 14 To determine
∫

1√
a2 − b2x2

dx where a and b are non-zero constants, we again use the sub-

stitution u = bx
a to change b2x2 into a2u2. Then

du

dx
= b

a and dx =
a
b du. The integral becomes∫

1√
a2 − b2x2

dx = a
b

∫
1

a
√
1− u2

dx = 1
b arcsinu+ c =

1
b arcsin

(
bx
a

)
+ c

Exercise 15

1. Use the suggested substitution to determine the given integral

a)
∫ 2

−1

x√
x+ 2

dx, u = x+ 2 b)
∫ 8

0

x3
√
x+ 1dx, u = x+ 1 c)

∫ 10

5

x+ 1√
x− 1

dx, u = x− 1

d)
∫ π

3

0

(tanx) (secx)
3
2 dx, u = secx e)

∫
1

3 + x2
dx,
√
3u = x f)

∫
x2
√
x+ 4dx, u = x+ 4

g)
∫
(x+ 1)

√
x− 2dx, u = x− 2 h)

∫
1√

1− 3x2
dx, u =

√
3x i)

∫ 7

0

x2√
x+ 1

dx, u = x+ 1

j)
∫ 1

0

1−
√
x

1 +
√
x
dx, u = 1 +

√
x k)

∫ 13

−2

x2√
x+ 3

dx, u = x+ 3 l)
∫

1

1 + 5x2
dx u =

√
5x

m)
∫
(1 +

√
x)
3/2

√
x

dx, u =
√
x+ 1 n)

∫
x3√
x2 + 4

dx, u = x2 + 4 o)
∫ 5

0

x+ 5√
x+ 3

dx, u = x+ 3

p)
∫

1√
1− (x− 3)2

dx, u = x− 3 q)
∫
x2 + 2

x+ 2
dx, u = x+ 2 r)

∫
tanx

sec3 x
dx, u = secx

2. Since x2 + 4x + 7 = 3 + (x+ 2)2,
∫

1

x2 + 4x+ 7
=

∫
1

3 + (x+ 2)
2 dx. The substitution

√
3u = x + 2

gives ∫
1

x2 + 4x+ 7
dx =

√
3
3

∫
1

1 + u2
du = 1√

3
arctanu+ c = 1√

3
arctan

(
x+2√
3

)
+ c

Integrate the following in a similar way:

a)
∫

1

2 + 2x+ x2
dx b)

∫
1

x2 + 4x+ 8
dx c)

∫
1

x2 + 3x+ 10
dx

3. Since 4x− x2 − 3 = 1− (x− 2)2,
∫

1√
4x− x2 − 3

dx =

∫
1√

1− (x− 2)2
dx. Let u = x− 2. Then

∫
1√

4x− x2 − 3
dx =

∫
1√
1− u2

du = arcsinu+ c = arcsin(x− 2) + c.

Integrate the following in a similar way

(a)
∫

1√
6x− x2 − 8

dx (b)
∫

1√
8− 2x− x2

dx

4. Evaluate the following: (a)
∫ 11

3

x+ 1√
2x+ 3

dx (b)
∫ 1

0

x3

x2 + 1
dx
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Justifying the Substitution Formula

Let f(x) be a given function, and assume that we wish to determine
∫ b

a

f(x)dx. Let g be a differentiable

function that maps some interval [c, d] onto [a, b]. To simplify the argument, assume that g is increasing on

[c, d]. In theory, to determine
∫ b

a

f(x)dx, we do the following:

• Select points a = x0 < x1 < · · · < xn = b that divide [a, b] into smaller subintervals [x0, x1], [x1, x2],
. . . , [xn−1, xn].

• Pick points t1 in [x0, x1], t2 in [x1, x2], . . . , and tn in [xn−1, xn], and

• Form Riemann sums
∑n

i=1
f(ti) (xi − xi−1) .

Then
∫ b

a

f(x)dx is the limit of the above Riemann sums as the lengths of the subintervals shrink to 0.

Take points c = u0 < u1 < · · · < un = d in [c, d], shown on the number line below,

that divide [c, d] into smaller subintervals [u0, u1], [u1, u2], . . . , [un−1, un]. We use them to select the points
x0, x1, . . ., xn and t0, t1, . . ., tn in [a, b], in the following special way: We apply the Mean Value Theorem to
g on the interval [u0, u1] to deduce that there is a number s1 in the interval [u0, u1], (see the figure below),
such that

g(u1)− g(u0) = (u1 − u0) g′(s1)

We then choose x0 = g(u0), x1 = g(u1) and t1 = g(s1). We next apply the theorem to g on [u1, u2] to obtain
a number s2 in the interval [u1, u2] such that

g(u2)− g(u1) = (u2 − u1) g′(s2),

then choose x2 = g(u2) and t2 = g(s2).

We continue in the same way till the nth step when we use the theorem to get a number sn in the interval
[un−1, un] such that

g(un)− g(un−1) = (un − un−1) g′(sn),

then choose xn = g(un) and tn = g(sn). Now the above Riemann sum may be written as

n∑
i=1

f(ti) (xi − xi−1) =
n∑
i=1

f(g(si)) [g(ui)− g(ui−1)] =
n∑
i=1

f(g(si))g
′(si) (ui − ui−1) .

Clearly,
∑n

i=1
f(g(si))g

′(si) (ui − ui−1) is a Riemann sum of f(g(u))g′(u) on the interval [c, d]. The limit of

such sums as the lengths of the intervals [u0, u1], [u1, u2], . . . , [un−1, un] shrink to zero is
∫ d

c

f(g(u))g′(u)du.

Therefore ∫ b

a

f(x)dx = lim

n∑
i=1

f(g(si))g
′(si) (ui − ui−1) =

∫ d

c

f(g(u))g′(u)du.
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More Practice Problems

1. Use the suggested substitution to evaluate the given definite integral:

a)
∫ 4

1

3dx
√
x (2
√
x+ 1)

2 u = 2
√
x+ 1. b)

∫ 1

0

x3dx

x2 + 1
u = x2 + 1.

c)
∫ π/4

0

sec2 xdx√
4 + 5 tanx

u = 4 + 5 tanx. d)
∫ 4

0

x
(√
3x+ 4

)
dx u = 3x+ 4.

e)
∫ π/4

0

(
cosx− sinx
sinx+ cosx

)
dx u = sinx+ cosx f)

∫ 1

0

x3dx

3x2 + 5
u = 3x2 + 5

g)
∫ π/3

π/6

csc2 x cotxdx

2 + cscx
u = 2 + cscx. h)

∫ 1

0

e2xdx

(1 + ex)
2 u = ex + 1.

i)
∫ 4

1

sec4 xdx√
1 + tanx

u = 1 + tanx. j)
∫ 10

1

x2
(√
2x− 1

)
dx u = 2x− 1.

k)
∫ 1

0

(x+ 2)
3
dx

x+ 1
u = x+ 1. l)

∫ 4

1

(√
3 +
√
x√

x

)
dx u = 3 +

√
x

m)
∫ π/2

0

sin3 xdx

cosx+ 3
u = cosx+ 3.

You may need the
identity

sin2 x = 1− cos2 x
n)
∫ 4

0

x3
(√
x2 + 9

)
dx u = x2 + 9.

o)
∫ π/4

1

sec2 x tanxdx

1 + tanx
u = 1 + tanx. p)

∫ π/3

0

sinx cosxdx√
2− sinx

u = 2− sinx.

q)
∫ 8

0

(2x− 1)
(√
2x+ 1

)
dx u = 2x+ 1. r)

∫ 1

0

(
ex − e−e
ex + e−x

)
dx u = ex + e−x

2. Use a suitable substitution to evaluate the definite integral:

1.
∫ 1/2

0

x3

(1− x2)3/2
dx 2.

∫ 3

1

(
x3
√
x2 + 3

)
dx 3.

∫ 2

0

(
x2√
x3 + 1

)
dx

4.
∫ π

3

0

tanx√
secx

dx 5.
∫ 4

0

(
x2√
2x+ 1

)
dx 6.

∫ 6

3

(x+ 2)
2 (√

x− 2
)
dx

7.
∫ π

3

π
4

(cotx) (cscx)
5
2 dx 8.

∫ 5

0

(
x2
√
x+ 4

)
dx 9.

∫ 1

0

(
x3

x2 + 4

)
dx
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