Making a Substitution in an Integral

There are integrals which may not yield to integration by inspection. An example is
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In such a case, we change to a new variable, a process called "substitution", to convert the unfamiliar integral
into a familiar one.

If you are willing to over-simplify, then making substitution may be likened to "changing" from one unit
of measure into another, (e.g. from miles into kilometers), in a problem of computing areas. For a specific
case, go back to the problem we solved, of determining the area of the piece of land between a straight road
and a river shaped like the graph of the parabola f(z) = 2% +3, 0 < x < 2, where z is measured in miles.
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Say it is given to an individual who is used to measuring distances in kilometers, and he insists on measuring
distances along the road in kilometers. Then, according to his calculations, the land is between the 0 and
the 15—6 = 3.2 kilometer marks, (because 1 mile is equal to 8 kilometers). He proceeds to divide it into small
strips using subintervals [0, u1], [u1,uz], ..., [Un—2, Un—1], [sun_l, 15—6] of [0, 15—6], then approximates each strip

with a rectangle as shown below.
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The expression (x2 + 3) gives the correct height of a rectangle only if z is in miles. Therefore, to calculate
the height of a strip on a typical interval [u;_1,u;], we first have to convert u; kilometers into miles. Since

1 kilometer is g miles, the height is
2
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The width and height should be measured in the same units, therefore we must convert the (u; —u;—1)

kilometers for the width into (%) (u; — u;—1) miles. Then the area of the typical rectangle is

miles.

{(SSi)Q + 3} (2) (u; — ui—1) square miles.



It follows that the area of the piece of land is the limit of the Riemann sums

n
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That limit is
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We say that we have made a substitution x = gu in the integral
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This boiled down to replacing x by %u and a little bit more. We had to replace interval [0, 2] for the variable
x by [0,3.2] for the new variable u. We also had to replace dx by %du, a step corresponding to giving the
correct "measures" for the widths of the approximating rectangles. We will call g the scaling factor for this

substitution. Note that if we define the function g(u) = %u, then replacing x? + 3 by (gu)2 + 3 is simply
forming the composition f o g(u) = f(g(u)). Furthermore, the scaling factor 2 is the derivative of g and
[0, 28] is the interval that g maps onto [0,2], (i.e. g(0) = 0 and g(1%) = 2). Therefore we have verified that

/OZf(x)d:E = /OIG/Sf(g(u))g’(u)du

To generalize, let f be a given function and [a,b] be an interval. To make a substitution in the integral

b
/ f(x)dx, we do the following:

1. Replace the independent variable x with a new variable u. (We likened this to changing from one set
of units to another.) This amounts to composing f with some suitable function g to get a new function

f(g(u)).
2. Multiply f(g(u)) by a scaling factor which happens to be g'(u).
3. Determine the interval [c,d] that g maps onto [a,b]. Then

b d
/ f(@)de = / F(g(w)g' (u)du (1)

d
We will soon defend (1). To apply it successfully, one should choose g(u) such that / flg(w)g' (u)du can

d
be determined by inspection. A bad choice for g(u) may give another unfamiliar integral / flg(w)g' (u)du.
C

Example 1 Say we wish to integrate dx by substitution: The integrand is

flz) =

X
V2 +1

We have to compose it with a suitable function g chosen so that f(g(u))g’(u) can be integrated by inspection.
To get it, note that if the denominator of the integrand were \/u and the numerator was a polynomial in u
then we would divide each term in the numerator by /u and proceed to integrate by inspection. Therefore
it is reasonable to look for a function g with the property that when we form the composition f(g(u)),
the expression /2x + 1 becomes \/u. The choice g(u) = (“Tfl) does precisely that. (We get it by setting
u =2z +1, so that \/2x + 1 becomes \/u, then solve for x in terms of u.) The scaling factor is ¢'(u) = %,
therefore

fg(w))g'(v) = % (“2 1) 1= (ul/z _ u71/2>



which we can integrate by inspection. We need the interval that g maps onto [0,2]. Since g is increasing,
we have to find numbers ¢ and d such that g(c) = 0 and g(d) = 4. They are c =1 and d =9, (obtained by
solving “T_l =0 and “T_l =4). Therefore,
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The following are short-cuts that lead to the same result. They are defended ahead.

u —

1
Instead of defining g(u) = ( ) then form the composition f(g(u)), simply let v = 22 + 1 and

2 (In fact if we define g(u) = <u2> and form

x
V2r+1 Vu
the composition f (g(u)), v2z + 1 is replaced by \/u.)

substitute it into the expression to get

du du
Differentiate u with respect to . The result is i 2. Now regard I & fraction and solve to get
x

x
de = %du. The scaling factor is % and we replace fla; by %du. (We have changed to a new independent

variable u hence the symbol du.) Indeed ¢'(u) = 5 by direct verification.

Replace the interval [0, 2] with [u(0),u(2)] = [1,9].

2 9 9
Then /0 \/%dx = /1 %du = %/1 %du. Since u = 2z +1, replace x with 3 (u — 1). Therefore

9 91 9
1 z [z (w—1) 1/ 1/2 —1/2
= —duzf/ = “du= 3 u’t—u du.
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The rest is similar to what we have done above.

b
In general, to make a substitution in a given integral / f(z)dzx using the short-cuts we do the following:
a

1.

Pick an expression in the formula for f(x) and denote it by w. This is called making a substituting
u = (expression in z). It is a trial and error process. You will know that you have made an incorrect
choice if you do not get a simpler integral after the substitution.

du du
Determine v’ = s then regard T as a fraction with numerator du and denominator dx and solve for
x x

1 1
dzx to get dz = — du. Now replace dz by — du.
u U

1
Use the relation u = (expression in x) to get rid of the variable = in the resulting expression f(z)— du.
u

Denote what you get by
(Equivalent expression in the variable u)du.

Replace the lower limit a of integration by wu(a), (the value of u when = = a) and the upper limit by
u(b), (the value of u when & = b). Then

b u(b)
/ f(x)dx = / (Equivalent expression in the variable u)du.
a u(a)

3
Example 2 To integrate / 22v/5x + 1dx by substitution, using the short-cuts, we let v = 5z + 1. Then
0

du

==

5, dz = tdu and x = L (u —1). Substitute these into f(x)dx = *\/5z + 1dx to get

1
f(x)u—du =L*Vudu =1 [%(u— 1)]2 Vudu = 15 (u5/2 —2u®? 4 u1/2> du.



In this case "(Equivalent expression in the variable u)du" is

ﬁ15 (u5/2 — 23?4 ul/z) du.

When =0, u=1 and when x = 3, u = 4, therefore

3 4 4
/ 2VEr T lde = L / [ = D) Viidu = g5 [ (692 = 202 4 u1/2)
0 1 1

4
= o5 {%u”z - %US/Q + %u?’/z] = 0.129 (to 3 decimal places).
1

Justifying the short-cuts
b
Let [ f(z)dz be a given integral. Say we have picked an expression h(x) in the formula for f(z) and have
defined u = h(x).
e If we choose g = h™ !, (the inverse of h) and form the composition f(g(u)), the expression h(z) in the
formula for f is replaced by wu.

= 1. Therefore

~—

e Since h(g(u)) = u, the chain rule implies that h'(g(u))g’(u

1

It follows that multiplying f(g(u)) by doz = —du amounts to introducing the scaling factor g’(u) for
U

the integral.

e We have to find numbers ¢ and d such that a = g(c¢) and b = g(d).

The diagram above tells the story. The function g maps the interval [c, d] onto the interval [a, b] in such
a way that g(c) = a and g(d) = b. But by definition, g = h~!. Therefore the equation g(c) = a may
be written as h~!(c) = a, which implies that ¢ = h(a). Similarly, h=!(d) = b implies that d = h(b).

Therefore
u(b)

b u(b) 1
/ syt = [ s @au= [ st
1 3

u(a) u

d
Example 3 To determine / xide, let w=3x+ 2. Then o 3 and so dx = %du. When z = 0,
0o (3z+2) dx



uw=2 and when x =1, u=>5. Also, v = % (u— 2), therefore

1 3 5 3 5
-2 1 1 12 8
/xigdas = /M-fdu:— (u—6—|——2>du
0 (3.%""2) 2 27U 3 81 2 u u
g1°
= é{;u26u+12lnu+u} =4 (12In2.5 - 9.9)
2
Example 4 To determme/ —— dx, letu=1x%2+1. Then d—u = 2x and so dx = idu When x =0
P ﬁﬁf’ AR e =M -0

uw =1 and when x =1, u = 2. Therefore

:ﬁz /J 5[2“

Since x? = u — 1, we replace x* with (x2)2 =(u— 1)2 =u? — 2u+ 1. Therefore
1 5 2,2 2
/ g = L wo2utl, %/ (u3/2 _9yl/2 +u—1/2) du
0 LE2 + 1 1 \/ﬁ 1

2
% [%u5/2 _ %u3/2 + 2u1/2]1 _ 7\/155—8'

d
Example 5 To determine /(12\/43:+1) dx, let w = 4x + 1. Then d—u = 4, hence dx = idu. Also
x

z =1 (u—1). Therefore

/(w2x/4337—|—1)d$ = /16( )f ——i (u5/2—2u3/2+u1/2)du

_ 6%1(%“7/2 4 5/2+2 3/2>+C

Thus / @iz + 1) do = & (% z+1)7? =2 (42 +1)°% + 2 (4a + 1)3/2) ¢

du du
E le 6 T d [t v/ dz, let =5 . Then — = t dde = — . Th
xample o fin / anz/secxdzx, let u = secx en In secxtanz and dx — e
integral becomes
/tanm\/secxdx = /\f /\f /—du
secx
= 2'/? +c=2+/secx +c.
. . 3 4 du . 1
Example 7 To determine sin® x cos* xdx, let u = cosx. Then s = —sinz and dv = ———du. The
T sinx

integral becomes

sinx

/sin3 zcost zdr = — / (sin3 w) ut - du = f/ (sm :c) wtdu
2

To replace the term sin®z by an expression involving u, we use the trigonometric identity —sin’z = 1 —

cos?x =1—u? Therefore

7 5

/sin3xcos4:cdx = —/ (1—u2)u4xd:c:/(u6—u4)du:%—%4-0

= %cos7x—%cos5x+c.



You should memorize the results of the next two examples.

d 1
Example 8 To determine /cot xdr = /C,Osxdx, let w = sinx. Then g cosz and dx = du.
sin x dx Ccos T
Therefore
o 5 1 1
/cotmdaz = /C,Obxdx = / ST du = /fdu =In|ul+c=In|sinz|+¢
sinx U Ccos T u
Le. /cot xdr =In|sinz| + ¢
. sin x U .
Example 9 To determine /tan xdr = / dx, let u = cosx. Then — = —sinz and de = ———du.
CcoS & dz sinz

Therefore

. . 1
/tanzdazz/smxdm:f/ sn.l:c du:—/fdu:fln\u|+c:ln|secx|+c
cos usinx u

Le. /tanxdm =In|secz| + ¢

dx, write VT — 922 as \/1— (32)*. Now the substitution u = 3z

Therefore let u = 3x. Then % =3 anddx = d?u

1
Example 10 To determine /7
P V1 —9z2

1
converts the integrand into the familiar function ——.
9 fomiiar function 7=

The integral becomes

= % arcsinu + ¢ = % arcsin 3x + ¢

/#daz—l/#du
VI—9z2 %) V1—au?

Example 11 To determine / 5dx, note that
T

1+16
1 1

1+1622 14+ (43;)2

1
and the substitution u = 4x converts this into the familiar integrand 178 Therefore let w = 4x. Then

u?’

d
4 and de = idu. The integral becomes

dx
1 1
= dr = 1 _—— 4
/1—|—16x2m 4/1+u2“

= i arctanu + ¢ = % arctan4x + ¢

1
Example 12 To determine /mdx, we look for a substitution that changes 2 into 5u? so that we may
x

d 1
factor out the 5. The choice x® = bu?, which is equivalent tov/5u = x, does it. We find that d—u = ﬁ7
x

hence dz = v/5du, and the integral becomes

1 V5 Vi )
/5+x2d$:/mduzTsarCtanu‘FC:%arctan(%)+c

1
a2 + b2z2
that changes b*x? into a’*u?, (so we can factor out the a®). The choice b*x* = a’u?, which is equivalent to

Example 13 To determine / dx where a and b are non-zero constants, we need a substitution

u = %9”, does precisely that. We get d—u = 2, hence dx = $du, and the integral becomes
x

1 1 1 1 b
\/md.’f = %/m(iu = Eafctanu-’—C = Earctan (%) + c.



Example 14 To determine /27[)226133 where a and b are non-zero constants, we again use the sub-
a? — b%x

2

du
stitution u = bf to change b’z into a®*u®. Then pr g and dz = Fdu. The integral becomes
x

-1 3 1 in (b=
€T = barcsmu—i—c- barcsm(a)—i—c

1 1
- dz=2o / -4
/ a? — b2z2 b ) av/1—u2
Exercise 15

1. Use the suggested substitution to determine the given integral

2 8 10
T z+1

a ——dr, u=x+2 b /x?’\/ﬂc—i—ldm,u:x—i—l c / ——dr,u=z—1

)/_1\/£C+2 ) 0 ) 5 \/:Z?—l

5 3 1
d) /3 (tan z) (secat)g dx, u=secx e) /de, V3u =z f) /xQ\/x+4d$, u=x+4
0 X

dx,uzx/gw dr,u=x+1

g)/(x+1)mdx,u:x—2 h)/ﬁ )/ﬁ

N E 13,2
j)/01+\/5dx,u +Vz k)[dex,u z+3 l)/1+52 =5z

3/2 3
1+ ) / x ) / r+5
m —————dz,u=+zr+1 n ———dr,u=z"+14 0 =z+4+3
) [E Ve ) [ = ) [ s
1 ) tanx
p)/wdx u=x—3 q)/x+2d$,u:$+2 T)\/@dfﬂ,uzsecx

1

— = [ ——  _dx. The substitution V3u =z + 2
2?4+ 4dx +7 /3+(z+2)2

2. Sincex2+4$—|—7:3—|—(z+2)2,/

gives

1 V3 1 1 1 42
/md:ﬂ:T/l_l_quu:ﬁarctanu—ﬁ—c:ﬁarctan(W)—i—c

Integrate the following in a similar way:

1 1 1
a)/2+2:c+x2d$ b)/:c2+4x+8d$ C)/x2+3:p+10dx

3. Since 4x — 22 -3 =1—( dr. Let u=x —2. Then

o

du = arcsinu + ¢ = arcsin(z — 2) + ¢

e s
S R
dr — 22 -3 1—u?

Integrate the following in a similar way

e N

x+1

1,3
. Bvaluate the following: Toor=a V) mril
4. Evaluate the following (a)/3 \/ﬁ ()/0 21t



Justifying the Substitution Formula

b
Let f(x) be a given function, and assume that we wish to determine [ f(x)dxz. Let g be a differentiable

a
function that maps some interval [c, d] onto [a,b]. To simplify the argument, assume that g is increasing on

b
[¢,d]. In theory, to determine / f(z)dz, we do the following;:
a

e Select points @ = zg < 1 < -+ < &, = b that divide [a, b] into smaller subintervals [xo, z1], [x1, Z2],
vy o1, ).
e Pick points t; in [zg,21], t2 in [21, 23], ..., and ¢, in [x,_1,z,], and

e Form Riemann sums Z;l ft:) (x; —xi-q) .

b
Then / f(z)dz is the limit of the above Riemann sums as the lengths of the subintervals shrink to 0.

Take points ¢ = ug < u3 < -+ < u,, = d in [¢, d], shown on the number line below,

0 n-1 n
that divide [c, d] into smaller subintervals [ug, u1], [u1,uz], ..., [Un—1,u,]. We use them to select the points
Zo, T, -« Ty and o, t1, ..., ty in [a, b], in the following special way: We apply the Mean Value Theorem to

g on the interval [ug, u1] to deduce that there is a number s; in the interval [ug, u1], (see the figure below),
such that

g(u1) — g(uo) = (w1 —uo) g'(s1)

We then choose o = g(up), 1 = g(u1) and t; = g(s1). We next apply the theorem to g on [u, us] to obtain
a number sy in the interval [uy, us] such that

g(ua) = g(u1) = (ug —u1) ¢'(s2),

then choose 23 = g(ug) and ty = g(s2).

|
T
1.13I u

—— 1
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=

=
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We continue in the same way till the nth step when we use the theorem to get a number s, in the interval
[thr,—1,uy] such that

g(un) - g(unfl) = (un - un,l)g/(sn),

then choose z,, = g(u,) and ¢, = g(s,). Now the above Riemann sum may be written as

S OFt) (@i —wioa) = > flg(s) [9(ui) — g(ui1)] =D Flg(si)g (s:) (wi —wi1) .
i=1 i=1 i=1
Clearly, Zil f(g(s:))g'(s:) (u; — ui—1) is a Riemann sum of f(g(u))g’(u) on the interval [c, d]. The limit of
B d
such sums as the lengths of the intervals [ug, u1], [u1, u2), - .., [tn—1, U] shrink to zero is / f(g(w)g' (u)du.
Therefore ‘

b n d
/f(w)dw=lime(9(8i))9’(si) (uz'—Ui—l):/ f(g9(u)g' (u)du.



More Practice Problems

a)/1\/5(2\/5+1)2 u=2yx+1.

71'/4 A2 d
c) _XC T =4+ 5tana.

o V4+5Hdtanz
/4 o
e)/ (c.osm smx) i
0 sinx + cosx

/3 ese? z cot xdx
g) o Ziocr

u =sinx + cosx

u =24 cscx.
¢ 2+cscx

[t sectxdx
i) | ——— u=1+tanz.

1 V1+tanz

1 3
k)/o (x+2)" dx

r+1
w [

) /4562 x tan zdx
o [l iuaketnied
1 1+tanz

u=ux+1.

You may need the
sin® zdz
u =cosx + 3.

o513 identity
cosz + sinz=1-cos?z

u=1+tanz.

q) /08(2x—1)(\/2x+1)d9c w=2x+1.

2. Use a suitable substitution to evaluate the definite integral:

o

1/2 23 3
1./ ———=dx / 23v/x2? + 3) dx
o (1-— x2)3/2 1 ( )

5 tanz 4 x?
4, dz 5. —— | dx
/0 \/secx /0 <\/2m+1>

7. /j (cot x) (csc x)g dx 8. /0d (22Vz +4) dz

4

1. Use the suggested substitution to evaluate the given definite integral:

u=z2+1.

1 .3
b)/ xzdx
o T +1
4
d) /x(\/3x+4)da: u =3z +4.
0
1 3
f)/ x2dx
0 3$2+5
1 9
e“dxr
o [
0 (I+e7)

i) /1 Y (VT de

u=232>+5
u=e%*+1.
u=2r—1.

1) /14 <M>dx u=3+7

Ve
4
n)/x3( 22+ 9)de u=a>+09.
0

/3 sin & cos xdx .
p) ———————— y=2-sinz.

0 V2 —sinx

1 T _ ,—e
r)/ (ee)dﬂc u=e®+e”
0 et + e "

o ()

6. /36(x+2)2 (Vo —2) du

1 1,3
. — | d
) /0 <x2+4) ’



