

Integration by Inspection

Recall that determining antiderivatives is the reverse of differentiating functions. Thus given a function $h(x)$, we have to answer the question: "*what is the most general function f whose derivative is $h(x)$?*" Equivalently, we imagine a table similar to the one below, giving the derivatives of various functions. Then determining an antiderivative means reading the table from right to left and add a constant to what you get.

Function	Derivative	
1. x^n	nx^{n-1}	
2. $\sin x$	$\cos x$	
3. $\cos x$	$-\sin x$	
4. $\tan x$	$\sec^2 x$	
5. $\csc x$	$-\csc x \cot x$	
6. $\sec x$	$\sec x \tan x$	
7. $\cot x$	$-\csc^2 x$	
8. e^x	e^x	
9. $\ln x $	$\frac{1}{x}$	
10. $\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	(1)
11. $\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$	
12. $\arctan x$	$\frac{1}{1+x^2}$	
13. $\sinh x$	$\cosh x$	
14. $\cosh x$	$\sinh x$	
15. $\tanh x$	$\operatorname{sech}^2 x$	
16. $\coth x$	$-\operatorname{csch}^2 x$	
17. $f(x) \pm g(x)$	$f'(x) \pm g'(x)$	
18. $kf(x)$, k a constant	$kf'(x)$	

For example, to determine $\int \sec x \tan x dx$ we look for $\sec x \tan x$ in the column for derivatives. We find it in formula number 6 paired with $\sec x$, therefore

$$\int \sec x \tan x dx = \sec x + c.$$

The reality though, is that it is impossible to construct a table containing the derivative of every conceivable differentiable function because there are infinitely many of them. In table (1), we listed the derivatives of the building blocks x^n , $\sin x$, etc, and two rules for calculating derivatives. As the examples below demonstrate, it is possible to determine integrals of a number of more complicated functions by using the integrals of these elementary functions and the listed rules.

Example 1 Consider $\int (2 \sin x - \frac{4}{x}) dx$. Even though $h(x) = 2 \sin x - \frac{4}{x}$ is not listed in table (1), its elementary components $2 \sin x$ and $-\frac{4}{x}$ are indirectly listed. Indeed formulas 3 and 18 imply that $2 \sin x$ is

the derivative of $-2 \cos x$ while 9 and 18 imply that $-\frac{4}{x}$ is the derivative of $-4 \ln x$. It follows from formula 17 that $2 \sin x - \frac{4}{x}$ is the derivative of $-2 \cos x - 4 \ln x$, therefore

$$\int \left(2 \sin x - \frac{4}{x}\right) dx = -2 \cos x - 4 \ln x + c$$

Example 2 To determine $\int (x^2 + 3x - 1) \sqrt{x} dx$, remove parentheses to get

$$\int (x^2 + 3x - 1) \sqrt{x} dx = \int (x^{5/2} + 3x^{3/2} - x^{1/2}) dx$$

Now formulas 1 and 18 in the table imply that $x^{5/2}$ is the derivative of $\frac{2}{7}x^{7/2}$, $3x^{3/2}$ is the derivative of $\frac{6}{5}x^{5/2}$ and $-x^{1/2}$ is the derivative of $-\frac{2}{3}x^{3/2}$. Therefore

$$\int (x^2 + 3x - 1) \sqrt{x} dx = \frac{2}{7}x^{7/2} + \frac{6}{5}x^{5/2} - \frac{2}{3}x^{3/2} + c$$

Example 3 Consider $\int \frac{3x+1}{2\sqrt{x}} dx$. Unlike derivatives, there is no quotient rule for integrals, therefore divide as much as possible then look for antiderivatives. The result is

$$\int \left(\frac{3x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}}\right) dx = \int \left(\frac{3}{2}\sqrt{x} + \frac{1}{2\sqrt{x}}\right) dx = \int \left(\frac{3}{2}x^{1/2} + \frac{1}{2}x^{-1/2}\right) dx.$$

Formula 1 of the table implies that $\frac{3}{2}\sqrt{x}$ is the derivative of $x^{3/2}$ and $\frac{1}{2}x^{-1/2}$ is the derivative of $x^{1/2}$. Therefore

$$\int \frac{3x+1}{2\sqrt{x}} dx = x^{3/2} + x^{1/2} + c$$

Example 4 To determine $\int x^2 \cos x^3 dx$, observe that the integrand is a product of the terms $\cos x^3$ and x^2 . The chain rule suggests that it was obtained by differentiating an expression involving $\sin x^3$, because

The Derivative of $\sin(\quad)$ is $\cos(\quad) \times$ Derivative of what is in (\quad)

Since the derivative of $\sin x^3$ is $(\cos x^3)(3x^2)$, which is not quite $x^2 \cos x^3$, the choice $\sin x^3$ is off the target by a **constant** 3. But that is easy to fix; we simply divide $\sin x^3$ by 3. Therefore

$$\int x^2 \cos x^3 dx = \frac{1}{3} \sin x^3 + c$$

You can easily check that the derivative of $F(x) = \frac{1}{3} \sin x^3 + c$ is $F'(x) = x^2 \cos x^3$.

Example 5 To determine $\int x\sqrt{3x^2 + 4} dx$, we also note that the presence of the terms $\sqrt{3x^2 + 4} = (3x^2 + 4)^{1/2}$ and x suggest that the integrand must be the result of differentiating an expression involving $(3x^2 + 4)^{3/2}$. By the chain rule, the derivative of $(3x^2 + 4)^{3/2}$ is

$$\frac{3}{2} \cdot (3x^2 + 4)^{1/2} (6x) = 9x\sqrt{3x^2 + 4}$$

which is off what we want by the constant factor 9. We fix this by dividing by 9. Therefore

$$\int x\sqrt{3x^2 + 4} dx = \frac{1}{9} (3x^2 + 4)^{3/2} + c$$

It should be easy to verify that the derivative of $f(x) = \frac{1}{9} (3x^2 + 4)^{3/2} + c$ is $x\sqrt{3x^2 + 4}$.

The Trial-And-Error method we used in the above examples is called **integration by inspection** (or integration by guessing wisely).

Exercise 6

1. Integrate each function by inspection. Check your answer by differentiating your indefinite integral.

$$(1) \int \sqrt{x} dx$$

$$(2) \int x^{10} dx$$

$$(3) \int \frac{1}{x^4} dx$$

$$(4) \int x^{-1} dx = \int \frac{1}{x} dx$$

$$(5) \int x^n dx, n \neq -1$$

$$(6) \int \frac{3}{\sqrt{x}} dx$$

$$(7) \int e^{4x} dx$$

$$(8) \int e^{0.5x+6} dx$$

$$(9) \int e^{-x} dx$$

$$(10) \int \left(\frac{4}{x} - \frac{x}{4} \right) dx$$

$$(11) \int \left(\pi^2 + \frac{8}{x} \right) dx$$

$$(12) \int \left(\frac{2}{\sqrt{1-x^2}} \right) dx$$

$$(13) \int \frac{3}{x^2+1} dx$$

$$(14) \int \left(x^3 - \frac{1}{4x^3} \right) dx$$

$$(15) \int (\sqrt{x} - \sqrt{2}) dx$$

$$(16) \int 3 \csc x \cot x dx$$

$$(17) \int \left(7x^{\frac{5}{2}} - x^{\frac{3}{2}} \right) dx$$

$$(18) \int (1 + x\sqrt{x}) dx$$

$$(19) \int (\pi x - \sec^2 x) dx$$

$$(20) \int \left(\frac{3x+4}{\sqrt{x}} \right) dx$$

$$(21) \int \left(\frac{x^2+1}{x^3} \right) dx$$

$$(22) \int \left(\frac{2}{\pi x^2} - 3 \right) dx$$

$$(23) \int (2x+1)^2 dx$$

$$(24) \int x (3x^2+1)^3 dx$$

$$(25) \int x^2 (4x^3+1)^4 dx$$

$$(26) \int x^3 (5x^4+1)^5 dx$$

$$(27) \int (\sqrt{8x+1}) dx$$

$$(28) \int (x\sqrt{8x^2+1}) dx$$

$$(29) \int (x^2\sqrt{x^3+1}) dx$$

$$(30) \int \frac{1}{\sqrt{8x+1}} dx$$

$$(31) \int \frac{x}{\sqrt{8x^2+1}} dx$$

$$(32) \int \frac{x^2}{\sqrt{8x^3+1}} dx$$

$$(33) \int (2x-3)^8 dx$$

$$(34) \int x (2x^2-3)^8 dx$$

$$(35) \int x^2 \left(\frac{x^3}{2} - 3 \right)^8 dx$$

$$(36) \int x^3 (2x^4-3)^8 dx$$

$$(37) \int \sin 5x dx$$

$$(38) \int \sin(5x-4) dx$$

$$(39) \int \sin(\frac{2}{3}x+1) dx$$

$$(40) \int \sin(ax+b) dx$$

$$(41) \int x \sec^2(x^2) dx$$

$$(42) \int x^2 \sec^2(x^3) dx$$

$$(43) \int x^3 \sec^2(x^4) dx$$

$$(44) \int x^4 \sec^2(x^5) dx$$

$$(45) \int x e^{x^2} dx$$

$$(46) \int x^2 e^{x^3} dx$$

$$(47) \int x^3 e^{x^4} dx$$

$$(48) \int x^4 e^{x^5} dx$$

2. (In this exercise, you obtain a result that we will soon use to derive Simpson's rule.) Let $q(x) = Ax^2 + Bx + C$ be a quadratic function and $[a, b]$ be an interval.

(a) Show that $\int_a^b q(x) dx = \frac{(b-a)}{6} [2A(b^2 + ab + a^2) + 3B(a+b) + 6C]$. (Hint: $b^3 - a^3$ factors as $(b-a)(b^2 + ab + a^2)$.)

(b) Show that $2A(b^2 + ab + a^2) + 3B(a+b) + 6C$ may be written as

$$(Aa^2 + Ba + C) + (Ab^2 + Bb + C) + A(a+b)^2 + 2B(a+b) + 4C$$

(c) Note that $A(a+b)^2 + 2B(a+b) + 4C = 4 \left[A \left(\frac{a+b}{2} \right)^2 + B \left(\frac{a+b}{2} \right) + C \right]$. Use this to deduce that

$$\int_a^b q(x) dx = \frac{(b-a)}{6} [q(a) + 4q\left(\frac{a+b}{2}\right) + q(b)].$$