
Integration by Inspection

Recall that determining antiderivatives is the reverse of differentiating functions. Thus given a function
h(x), we have to answer the question: "what is the most general function f whose derivative is h(x)?"
Equivalently, we imagine a table similar to the one below, giving the derivatives of various functions. Then
determining an antiderivative means reading the table from right to left and add a constant to what you get.

Function Derivative

1. xn nxn−1

2. sinx cosx

3. cosx − sinx

4. tanx sec2 x

5. cscx − cscx cotx

6. secx secx tanx

7. cotx − csc2 x

8. ex ex

9. ln |x| 1

x

10. arcsinx
1√
1− x2

11. arccosx − 1√
1− x2

12. arctanx
1

1 + x2

13. sinhx coshx

14. coshx sinhx

15. tanhx sech2x

16. cothx − csch2x

17. f(x)± g (x) f ′(x)± g′ (x)

18. kf(x), k a constant kf ′(x)

(1)

For example, to determine
∫
secx tanxdx we look for secx tanx in the column for derivatives. We find it

in formula number 6 paired with secx, therefore∫
secx tanxdx = secx+ c.

The reality though, is that it is impossible to construct a table containing the derivative of every conceiv-
able differentiable function because there are infinitely many of them. In table (1), we listed the derivatives
of the building blocks xn, sinx, etc, and two rules for calculating derivatives. As the examples below demon-
strate, it is possible to determine integrals of a number of more complicated functions by using the integrals
of these elementary functions and the listed rules.

Example 1 Consider
∫ (

2 sinx− 4
x

)
dx. Even though h(x) = 2 sinx − 4

x is not listed in table (1), its

elementary components 2 sinx and − 4
x are indirectly listed. Indeed formulas 3 and 18 imply that 2 sinx is
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the derivative of −2 cosx while 9 and 18 imply that − 4
x is the derivative of −4 lnx. It follows from formula

17 that 2 sinx− 4
x is the derivative of −2 cosx− 4 lnx, therefore∫ (

2 sinx− 4
x

)
dx = −2 cosx− 4 lnx+ c

Example 2 To determine
∫ (

x2 + 3x− 1
)√

xdx, remove parentheses to get

∫ (
x2 + 3x− 1

)√
xdx =

∫ (
x5/2 + 3x3/2 − x1/2

)
dx

Now formulas 1 and 18 in the table imply that x5/2 is the derivative of 27x
7/2, 3x3/2 is the derivative of 65x

5/2

and −x1/2 is the derivative of − 23x
3/2. Therefore∫ (

x2 + 3x− 1
)√

xdx = 2
7x

7/2 + 6
5x

5/2 − 2
3x

3/2 + c

Example 3 Consider
∫
3x+ 1

2
√
x
dx. Unlike derivatives, there is no quotient rule for integrals, therefore divide

as much as possible then look for antiderivatives. The result is∫ (
3x

2
√
x
+

1

2
√
x

)
dx =

∫ (
3
2

√
x+

1

2
√
x

)
dx =

∫ (
3
2x

1/2 + 1
2x
−1/2

)
dx.

Formula 1 of the table implies that 3
2

√
x is the derivative of x3/2 and 1

2x
−1/2 is the derivative of x1/2.

Therefore ∫
3x+ 1

2
√
x
dx = x3/2 + x1/2 + c

Example 4 To determine
∫
x2 cosx3dx, observe that the integrand is a product of the terms cosx3 and x2.

The chain rule suggests that it was obtained by differentiating an expression involving sinx3, because

The Derivative of sin ( ) is cos ( )× Derivative of what is in ( )

Since the derivative of sinx3 is
(
cosx3

) (
3x2
)
, which is not quite x2 cosx3, the choice sinx3 is off the target

by a constant 3. But that is easy to fix; we simply divide sinx3 by 3. Therefore∫
x2 cosx3dx = 1

3 sinx
3 + c

You can easily check that the derivative of F (x) = 1
3 sinx

3 + c is F ′(x) = x2 cosx3.

Example 5 To determine
∫
x
√
3x2 + 4dx, we also note that the presence of the terms

√
3x2 + 4 =

(
3x2 + 4

)1/2
and x suggest that the integrand must be the result of differentiating an expression involving

(
3x2 + 4

)3/2
.

By the chain rule, the derivative of
(
3x2 + 4

)3/2
is

3
2 ·
(
3x2 + 4

)1/2
(6x) = 9x

√
3x2 + 4

which is off what we want by the constant factor 9. We fix this by dividing by 9. Therefore∫
x
√
3x2 + 4dx = 1

9

(
3x2 + 4

)3/2
+ c

It should be easy to verify that the derivative of f(x) = 1
9

(
3x2 + 4

)3/2
+ c is x

√
3x2 + 4.

The Trial-And-Error method we used in the above examples is called integration by inspection (or
integration by guessing wisely).
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Exercise 6

1. Integrate each function by inspection. Check your answer by differentiating your indefinite integral.

(1)
∫ √

xdx (2)
∫
x10dx (3)

∫
1

x4
dx

(4)
∫
x−1dx =

∫
1

x
dx (5)

∫
xndx, n 6= −1 (6)

∫
3√
x
dx

(7)
∫
e4xdx (8)

∫
e0.5x+6dx (9)

∫
e−xdx

(10)
∫ (

4

x
− x

4

)
dx (11)

∫ (
π2 +

8

x

)
dx (12)

∫ (
2√
1− x2

)
dx

(13)
∫

3

x2 + 1
dx (14)

∫ (
x3 − 1

4x3

)
dx (15)

∫ (√
x−
√
2
)
dx

(16)
∫
3 cscx cotxdx (17)

∫ (
7x

5
2 − x 3

2

)
dx (18)

∫
(1 + x

√
x) dx

(19)
∫ (

πx− sec2 x
)
dx (20)

∫ (
3x+ 4√

x

)
dx (21)

∫ (
x2 + 1

x3

)
dx

(22)
∫ (

2

πx2
− 3
)
dx (23)

∫
(2x+ 1)

2
dx (24)

∫
x
(
3x2 + 1

)3
dx

(25)
∫
x2
(
4x3 + 1

)4
dx (26)

∫
x3
(
5x4 + 1

)5
dx (27)

∫ (√
8x+ 1

)
dx

(28)
∫ (

x
√
8x2 + 1

)
dx (29)

∫ (
x2
√
x3 + 1

)
dx (30)

∫
1√
8x+ 1

dx

(31)
∫

x√
8x2 + 1

dx (32)
∫

x2√
8x3 + 1

dx (33)
∫
(2x− 3)8 dx

(34)
∫
x
(
2x2 − 3

)8
dx (35)

∫
x2
(
x3

2
− 3
)8

dx (36)
∫
x3
(
2x4 − 3

)8
dx

(37)
∫
sin 5xdx (38)

∫
sin(5x− 4)dx (39)

∫
sin( 23x+ 1)dx

(40)
∫
sin(ax+ b)dx (41)

∫
x sec2

(
x2
)
dx (42)

∫
x2 sec2

(
x3
)
dx

(43)
∫
x3 sec2

(
x4
)
dx (44)

∫
x4 sec2

(
x5
)
dx (45)

∫
xex

2

dx

(46)
∫
x2ex

3

dx (47)
∫
x3ex

4

dx (48)
∫
x4ex

5

dx

2. (In this exercise, you obtain a result that we will soon use to derive Simpson’s rule.) Let q(x) =
Ax2 +Bx+ C be a quadratic function and [a, b] be an interval.

(a) Show that
∫ b

a

q(x)dx = (b−a)
6

[
2A(b2 + ab+ a2) + 3B (a+ b) + 6C

]
. (Hint: b3 − a3 factors as

(b− a)
(
b2 + ab+ a2

)
.)

(b) Show that 2A(b2 + ab+ a2) + 3B (a+ b) + 6C may be written as(
Aa2 +Ba+ C

)
+
(
Ab2 +Bb+ C

)
+A (a+ b)

2
+ 2B (a+ b) + 4C

(c) Note that A (a+ b)2 + 2B (a+ b) + 4C = 4
[
A
(
a+b
2

)2
+B

(
a+b
2

)
+ C

]
. Use this to deduce that∫ b

a

q(x)dx = (b−a)
6

[
q(a) + 4q

(
a+b
2

)
+ q(b)

]
.
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