

Inverse Hyperbolic Functions

Consider $f(x) = \sinh x$. Its graph reveals that it is a one-to-one function, therefore it has an inverse, which we denote by $\sinh^{-1} x$. To obtain a formula for $\sinh^{-1} x$, we write the equation

$$y = \sinh x \quad (1)$$

and solve for x in terms of y . Clearly, (1) implies that

$$y = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x}$$

This may be re-arranged as $(e^x)^2 - 2ye^x - 1 = 0$, which is a quadratic equation in e^x . By the quadratic formula

$$e^x = \frac{2y \pm \sqrt{4y^2 + 4}}{2} = y \pm \sqrt{y^2 + 1}$$

Since e^x cannot be negative, and $\sqrt{y^2 + 1} > y$, we must choose the positive sign. Therefore $e^x = y + \sqrt{y^2 + 1}$. This implies that $x = \ln(y + \sqrt{y^2 + 1})$. Therefore

$$\sinh^{-1} y = \ln(y + \sqrt{y^2 + 1}) \quad (2)$$

Now consider $g(x) = \cosh x$, for $x \geq 0$, (we have to restrict the values of x to get a one-to-one function). Its inverse is denoted by $\cosh^{-1} x$. To determine its formula, we write the equation

$$y = \cosh x$$

then solve for x in terms of y . Go through the same routine as above. You should obtain

$$e^x = y \pm \sqrt{y^2 - 1}$$

Since $e^x \rightarrow \infty$ as $y \rightarrow \infty$ while $y - \sqrt{y^2 - 1} \rightarrow 0$ as $y \rightarrow \infty$, we must choose the positive sign. Therefore $e^x = y + \sqrt{y^2 - 1}$. This implies that $x = \ln(y + \sqrt{y^2 - 1})$. Therefore

$$\cosh^{-1} y = \ln(y + \sqrt{y^2 - 1}), \quad y \geq 1 \quad (3)$$

Lastly, note that the graph of $h(x) = \tanh x$ indicates that h is one-to-one, therefore it has an inverse, denoted by $\tanh^{-1} x$. Write $y = \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ and re-arrange to get $e^{2x} = \left(\frac{1+y}{1-y}\right)$. Deduce that

$$\tanh^{-1} y = \frac{1}{2} \ln\left(\frac{1+y}{1-y}\right), \quad -1 < y < 1$$

Exercise 1

1. Verify that if $u(x) = \cosh^{-1} x$, $v(x) = \sinh^{-1} x$, and $w(x) = \tanh^{-1} x$ then

$$u'(x) = \frac{1}{\sqrt{x^2 - 1}}, \quad v'(x) = \frac{1}{\sqrt{x^2 + 1}}, \quad w'(x) = \frac{1}{1 - x^2}$$

2. We showed above that if $y = \cosh x$ and $y \geq 0$ then $e^x = y + \sqrt{y^2 - 1}$. This implies that

$$e^{-x} = \frac{1}{e^x} = \frac{1}{y + \sqrt{y^2 - 1}} = \frac{y - \sqrt{y^2 - 1}}{(y + \sqrt{y^2 - 1})(y - \sqrt{y^2 - 1})} = y - \sqrt{y^2 - 1}$$

Since $\sinh x = \frac{1}{2}(e^x - e^{-x})$, it follows that $\sinh x = \sqrt{y^2 - 1}$. Show in a similar way that if $y = \sinh x$ then $\cosh x = \sqrt{y^2 + 1}$.

These results useful in integration by substitution.

$$\left. \begin{array}{l} \text{If } \cosh x = y \text{ then } \sinh x = \sqrt{y^2 - 1} \\ \text{If } \sinh x = y \text{ then } \cosh x = \sqrt{y^2 + 1} \end{array} \right\} \quad (4)$$

3. The function $f(x) = \sec x$ is one-to-one on $[0, \frac{1}{2}\pi]$ therefore we may define an inverse function $g(x) = \operatorname{arcsec} x$.

Show that its derivative is $g'(x) = \frac{1}{x\sqrt{x^2 - 1}}$, $x > 1$

In an earlier exercise, you showed that the derivative of $\arccos(\frac{1}{x})$ is also $\frac{1}{x\sqrt{x^2 - 1}}$. Is $\operatorname{arcsec} x$ related to $\arccos(\frac{1}{x})$ or this is pure chance? Defend your answer.

4. The function $f(x) = \csc x$ is one-to-one on $[0, \frac{1}{2}\pi]$ therefore we may define an inverse function $h(x) = \operatorname{arccsc} x$. Determine its derivative.

5. Let $f(x) = \ln(x + \sqrt{a^2 + x^2})$ where a is a constant. Show that $f'(x) = \frac{1}{\sqrt{a^2 + x^2}}$.