
Implicit Differentiation

Before we differentiate functions implicitly, we need to introduce other notations for the higher derivatives
of a given function f , and introduce the concept of a function defined implicitly. The first step is to denote
f(x) by y, (or any other convenient letter, but y is the the most popular). Then:

The first order derivative of y = f(x) may be denoted by
dy

dx
.

The second order derivative of y = f(x) is denoted by
d2y

dx2
.

In general, the nth order derivative of y = f(x) is denoted by
dny

dxn
.

According to the chain rule, the derivative of [f(x)]2 is 2 [f(x)] f ′(x) or simply 2f(x)f ′(x). If we write

f(x) as y then [f(x)]2 may be written as y2 and 2f(x)f ′(x) as 2y
dy

dx
. Therefore the derivative of y2 is 2y

dy

dx
.

In general:

The derivative of yn is nyn−1
dy

dx
.

The derivative of cos y is − sin y dy
dx
.

The derivative of ey is ey
dy

dx
.

The derivative of sec y is sec y tan y
dy

dx
.

The derivative of cot y is − csc2 y dy
dx
.

The derivative of sin y is cos y
dy

dx
. We hope the pattern is clear

Turning to functions defined implicitly, take a function like f(x) = 3
√
5x2 + 7. We say it is defined directly

because, given any number x in its domain, we evaluate the value f(x) of f at x by simply substituting x
into the right hand side. But this same function may be defined by the equation

(f(x))
3 − 5x2 = 7 (1)

This time, when a number, e.g. −2, is given, we do not get the value f(−2) of f at −2 directly from
substituting −2 into (1). We have to solve yet another equation, (which is (f(−2))3 − 20 = 7) to get it. We
say that equation (1) defines f indirectly or implicitly.

The following are more examples of functions defined implicitly. For convenience, we have written f(x)
as y. Thus, in each case, y is defined implicitly.

a. 3xy = 4 b. sinxy = 1
2x c. x2 + y2 = 9

d.
√
xy − 4y2 = 12 e.

√
x+ y − 4x2 = y f. x+3

y = 4x2 + y2.

It may be possible to write a function defined implicitly in a direct form. For example, if y is defined

implicitly by 3xy = 4, we may solve for y to get y =
4

3x
. However, there are functions for which the implicit

form may be hard to convert into a direct form. Try y defined implicitly by

x+ 3

y
= 4x2 + y2

The following is a procedure, called implicit differentiation or differentiating implicitly, for determining
the derivative of a function y that is defined implicitly:
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Take the derivative of each term in the equation defining y, using the
rules for derivatives. The result should be an equation with at least one
term involving the derivative of y. Solve the equation for the derivative.

Example 1 Let y be defined implicitly by y3− 5x2 = 7. To find dy
dx

we take the derivatives of the terms y3,

−5x2, and 7, one at a time, to get
3y2

dy

dx
− 10x = 0

We now solve for
dy

dx
and the result is

dy

dx
=
10x

3y2
.

Example 2 Let y be defined implicitly by
x+ 3

y
= 4x2 + y2. To find

dy

dx
, we have to find the derivative of

each term in the equation. Before we do so, it is a good idea to first clear the fractions. Therefore, multiply
both sides by y to get

x+ 3 = 4x2y + y3.

(This saves us a trip to the quotient rule.) Now take the derivatives of the terms x, 3, 4x2y, and y3 one at
a time. Note that 4x2y is a product of

(
4x2

)
and y, therefore determining its derivative requires the use of

the product rule. Its derivative is 8xy + 4x2
dy

dx
. The result of taking the derivative of each term is

1 + 0 = 8xy + 4x2
dy

dx
+ 3y2

dy

dx
.

Re-arrange this to get 1− 8xy =
(
4x2 + 3y2

) dy
dx
, then divide by 4x2 + 3y2 to get the derivative:

dy

dx
=

1− 8xy
4x2 + 3y2

Example 3 Let y be defined implicitly by sinxy = 1
2x − y

2. To find dy
dx , take the derivative of the terms

sinxy, 12x, and y
2 one at a time. Note that the term sinxy has the form sin ( ), therefore its derivative is

cosxy ×Derivative of (xy) which equals (cosxy)
(
y + x

dy

dx

)
The result of taking the derivative of each term is

(cosxy)

(
y + x

dy

dx

)
=
1

2
− 2y dy

dx

Re-arranging gives (x cosxy + 2y)
dy

dx
=
(
1
2 − y cosxy

)
. We then solve for

dy

dx
and the result is

dy

dx
=
1− 2y cosxy
2x cosxy + 4y

To get higher order derivatives, take derivatives more than once using the fact that the derivative of
dy

dx

is denoted by
d2y

dx2
, the derivative of

d2y

dx2
is denoted by

d3y

dx3
, . . .
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Example 4 Let y be defined implicitly by x2y−3y3 = −2x, and assume that we are required to find dy
dx

and

d2y

dx2
at the point (1, 1) on the graph of y. Differentiating each term gives 2xy + x2

dy

dx
− 9y2 dy

dx
= −2 which

we may re-arrange as (
x2 − 9y2

) dy
dx
= −2− 2xy. (2)

As before, we solve for
dy

dx
. The result is

dy

dx
=
−2− 2xy
x2 − 9y2 =

2 + 2xy

9y2 − x2 (3)

The value of
dy

dx
at (1, 1) is obtained by substituting x = 1 and y = 1 into (3), and it is 4

8 =
1
2 . To get

the second derivative, you may take the derivatives of both sides of (3), but if you wish to avoid using the
quotient rule, take the derivative of both sides of (2) to get(

2x− 18y dy
dx

)
dy

dx
+
(
x2 − 9y2

) d2y
dx2

= −
(
2y + 2x

dy

dx

)
.

We have just shown that at (1, 1),
dy

dx
= 1

2 , therefore the value of
d2y

dx2
at (1, 1) is given by

[2− 18( 12 )](
1
2 ) + (−8)

d2y

dx2
= −[2 + 2( 12 )]

Solve to get
d2y

dx2
= − 1

16
.

Example 5 Let y be defined implicitly by x2+xy+ y2 = 7. The point (1,−3) is on the graph of y, (because
when we substitute x = 1 and y = 3 in the left hand side of the equation, we get 7). Suppose we have to find
the equation of the tangent at (1, 3). We first differentiate implicitly and the result is

2x+ y + x
dy

dx
+ 2y

dy

dx
= 0 (4)

We then substitute x = 1 and y = −3 in (4), and solve for the derivative, to get dy
dx

= − 15 . Therefore the
slope of the tangent at (1,−3) is − 15 . Its equation must be given by

(y − (−3)) = − 15 (x− 1),

which simplifies to y = − 15x−
14
5 .

Exercise 6

1. Use implicit differentiation to find
dy

dx
given that y is defined implicitly by:

(a) xy + x2y2 = 5. (b) x3 − xy + y3 = 1. (c) x1/2 + y1/2 = 1.

(d) x2 =
x− y2
x+ y

(e) x2 + xy − y2 = 1. (f) x sin y + 2y = 0

2. Show that if ey − x = 0 then dy
dx
=
1

ey
and deduce that

dy

dx
=
1

x
.

3. Show that if tan y − x = 0 then dy
dx
=

1

sec2 y
and deduce that

dy

dx
=

1

1 + x2
.
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4. In each question, verify that the given point is on the curve defined implicitly by the given equation
then find the equation of the tangent at that point.

a) xy + x2y2 = 6, (1, 2) b) x2y2 = 4y, (2, 1)

c) y2 + 2xy − 4 = 0, (0, 2) d) y2 − 3x2y = cosx, (0, 1)

e) x3y3 = 9y, (1, 3) f) cos y + y + x = 2, (1, 0)

g) x2 + y2 − xy = 7, (2,−1) h) xey − 3y = 1, (1, 0)

5. The function y is defined implicitly by x2 +2x+ y2 − 3y = 0. Determine the points on its graph where
it has horizontal tangents. Also determine the points where it has vertical tangents, (i.e. the points
where the tangent has infinite slope).

6. Find the second derivative
d2y

dx2
(or y′′) at the given point, if y = f(x) is defined implicitly by the given

equation: (a) x3 + y3 = 16 at (2, 2)

(b) xy + y2 = 1 at (0,−1) (c) exy + 2y − 3x = sin y at
(
1
3 , 0
)

7. Find the second derivative
d2y

dx2
(or y′′) given that y is defined implicitly by the equation:

(a) x2 + y2 = 4 (b) y2x2 + 3x− 4y = 5 (c) exy + 2y − 3x = sin y

8. Show that the tangent to the curve y2 = x3 − 6x + 4 at the point A (−1, 3) intersects the curve at
another point B and give the coordinates of B.

9. Find the two points where the curve x2+ xy+ y2 = 7 crosses the x-axis, and show that the tangents to
the curve at these points are parallel. What are their equations?

10. A normal to a given curve at a point (a, b) on the curve is a line that is perpendicular to the tangent
at (a, b) . Find the equation of the normal to the parabola y2 − 4x = 0 at the point (1, 2) .
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