

L'Hopital's Rule

If f and g are functions such that $f(a) = g(a) = 0$ then when we try to compute $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$ by substituting $x = a$ into the numerator and denominator, we may end up with the undefined expression $\frac{0}{0}$. In such a case, L'Hopital's rule may save the day. It states that if $f(a) = g(a) = 0$ and $\lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$ exists then

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}.$$

To prove it, take any number x close to a . By the Generalized Mean Value Theorem, there is a number y between a and x such that

$$\frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(y)}{g'(y)}$$

Since $f(a) = g(a) = 0$, it follows that

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{y \rightarrow a} \frac{f'(y)}{g'(y)}$$

The variable y does not change the value of the limit. Therefore we may write

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$$

Example 1 Consider $h(x) = \frac{x^3 - 1}{x^{14} - 1}$. Let $f(x) = x^3 - 1$ and $g(x) = x^{14} - 1$. Then $f(1) = g(1) = 0$ and

$$\lim_{x \rightarrow 1} \frac{f'(x)}{g'(x)} = \lim_{x \rightarrow 1} \left(\frac{3x^2}{14x^{13}} \right) = \frac{3}{14}.$$

By L'Hopital's rule, $\lim_{x \rightarrow 1} h(x) = \lim_{x \rightarrow 1} \frac{x^3 - 1}{x^{14} - 1} = \lim_{x \rightarrow 1} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 1} \frac{f'(x)}{g'(x)} = \frac{3}{14}$

Example 2 Consider $h(x) = \frac{\sin 2x^2}{x^2}$. Let $f(x) = \sin 2x^2$ and $g(x) = x^2$. Then $f(0) = g(0) = 0$ and

$$\lim_{x \rightarrow 0} \frac{f'(x)}{g'(x)} = \lim_{x \rightarrow 0} \frac{(\cos 2x^2) \cdot 4x}{2x} = \lim_{x \rightarrow 0} 2 \cos 2x^2 = 2.$$

By L'Hopital's rule, $\lim_{x \rightarrow 0} h(x) = \lim_{x \rightarrow 0} \frac{\sin 2x^2}{x^2} = \lim_{x \rightarrow 0} \frac{f'(x)}{g'(x)} = 2$

The rule extends to cases in which derivatives also vanish. For example, suppose f and g are such that $f(a) = f'(a) = 0$ and $g(a) = g'(a) = 0$. If $\lim_{x \rightarrow a} \frac{f''(x)}{g''(x)}$ exists then

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f''(x)}{g''(x)}.$$

In general, if $f(a) = f'(a) = \dots = f^{(n-1)}(a) = 0$; $g(a) = g'(a) = \dots = g^{(n-1)}(a) = 0$, and $\lim_{x \rightarrow a} \frac{f^{(n)}(x)}{g^{(n)}(x)}$ exists, then

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f^{(n)}(x)}{g^{(n)}(x)}.$$

Example 3 Consider $\lim_{x \rightarrow 0} \frac{1 - \cos 2x}{3x^2}$. Let $f(x) = 1 - \cos 2x$ and $g(x) = 3x^2$. Then $f(0) = f'(0) = 0$ and $g(0) = g'(0) = 0$. However,

$$\lim_{x \rightarrow 0} \frac{f''(x)}{g''(x)} = \lim_{x \rightarrow 0} \frac{4 \cos 2x}{6} = \frac{2}{3}.$$

By L'Hopital's rule,

$$\lim_{x \rightarrow 0} \frac{1 - \cos 2x}{3x^2} = \lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 0} \frac{f''(x)}{g''(x)} = \frac{2}{3}$$

Exercise 4 Calculate the following limits:

$$(a) \lim_{x \rightarrow 0} \left(\frac{\sin 3x}{\tan 5x} \right) \quad (b) \lim_{x \rightarrow 2} \left(\frac{x^2 - 4}{x^3 - 8} \right) \quad (c) \lim_{x \rightarrow 0} \frac{\tan(3x^2)}{4x^2}$$

$$(d) \lim_{x \rightarrow 0} \frac{x - \sin x}{2x^2} \quad (e) \lim_{x \rightarrow 0} \left(\frac{x - \sin x}{x - x \cos x} \right) \quad (f) \lim_{x \rightarrow -1} \left(\frac{x^4 - 2x^2 + 1}{x^3 + 4x^2 + 5x + 2} \right)$$

Another version of L'Hopital's rule

Suppose f and g are functions such that $f(x) \rightarrow \infty$ (or $-\infty$) and $g(x) \rightarrow \infty$ (or $-\infty$) as x approaches a , (a could be finite or infinite.)

If $\lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$ exists then $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$ also exists and it is equal to $\lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$.

The proof happens to be considerably harder, so we skip it. Here are examples where it is used.

Example 5 Let $f(x) = 3x + 5$ and $g(x) = 4 - 5x$. Then $f(x) \rightarrow \infty$ and $g(x) \rightarrow -\infty$ as $x \rightarrow \infty$. Since $\lim_{x \rightarrow \infty} \frac{f'(x)}{g'(x)} = \lim_{x \rightarrow \infty} -\frac{3}{5}$, it follows that $\lim_{x \rightarrow \infty} \frac{3x + 5}{4 - 5x} = -\frac{3}{5}$.

Example 6 Consider $\lim_{x \rightarrow \infty} \frac{3x}{e^x}$. Let $f(x) = 3x$ and $g(x) = e^x$. Then $f(x) \rightarrow \infty$ and $g(x) \rightarrow \infty$ as $x \rightarrow \infty$. But $\lim_{x \rightarrow \infty} \frac{f'(x)}{g'(x)} = \lim_{x \rightarrow \infty} \frac{3}{e^x} = 0$, therefore $\lim_{x \rightarrow \infty} \frac{3x}{e^x} = 0$.

Example 7 Let $f(x) = x^2 + 5x - 1$ and $g(x) = 2x^2 - 3x + 5$. Then $f(x)$, $g(x)$, $f'(x)$, and $g'(x)$ all approach ∞ as $x \rightarrow \infty$. Since $\lim_{x \rightarrow \infty} \frac{f''(x)}{g''(x)} = \lim_{x \rightarrow \infty} \frac{2}{4} = \frac{1}{2}$, it follows that $\lim_{x \rightarrow \infty} \frac{x^2 + 5x - 1}{2x^2 - 3x + 5} = \frac{1}{2}$.

Exercise 8 Determine the required limits. In part (c), n is a positive integer.

$$(a) \lim_{x \rightarrow \infty} \left(\frac{107x}{x^2 + 1} \right) \quad (b) \lim_{x \rightarrow \infty} \frac{x^2}{e^x} \quad (c) \lim_{x \rightarrow \infty} \frac{x^n}{e^x}$$

Remark 9 Problems ?? and ?? on page ?? provide applications of L'Hopital's rule to two other forms of indeterminate limits.