
Higher Order Derivatives

A higher order derivative is the derivative of a derivative. For example, let f(x) = 3x2 − 2
x . Its derivative is

f ′(x) = 6x + 2
x2 . The derivative of f

′(x) is an example of a higher order derivative of f , called the second
derivative of f , and denoted by f ′′(x). Thus

f ′′(x) = 6− 4

x3
.

One may also take the derivative of f ′′(x). The result is called the third order derivative of f and is denoted

by f ′′′(x). Therefore f ′′′(x) =
12

x4
. Fourth and higher order derivatives of f are calculated in a similar way.

For another example, consider g(x) = 4x4 − 3x2 + 5x− 3. Its first derivative is

g′(x) = 16x3 − 6x+ 5.

The second derivative is g′′(x) = 48x2 − 6. The third derivative is g′′′(x) = 96x, the fourth is written as
g(4)(x) and it is the constant function g(4)(x) = 96. The fifth and higher derivatives are all zeros.
For practice, find the first and second derivative of each of the following:

(a) f(x) = 3x5 − 2x3 + x− 3 (b) g(x) = 2 sinx− 4 cosx (c) h(x) = 4e3x

(d) u(x) = 8x cosx− 1 (e) v(x) = 4− x sinx (f) w(x) = 2
x2

(g) f(x) = 4x
7 −

7
4x2 + 5 (h) g(x) = 5− 3 sin 12x (i) h(x) = 2 secπx

Our first use of second order derivatives is to determine shapes of graphs. There are graphs like that
of f(x) = (x+ 2)2 + 1 and g(x) = ex shown below, shaped like right-side up bowls or part of right-side up
bowls.
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Graph of f(x) = (x+ 2)2 + 1 Graph of g(x) = ex

We call them concave up graphs. A more precise definition is given in Exercise 12 on page 5. Their
counter-parts, like the graphs of h(x) = −2x2 + 5 and v(x) = 3 + 1

x , x < 0, are shaped like upside-down
bowls or part of upside-down bowls.
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Graph of h(x) = −2x2 + 5 Graph of v(x) = 3 + 1
x , x < 0

They are called concave down graphs. Some graphs are concave up on some intervals and concave down
on others. An example is the graph of sinx. It is concave down on intervals like [0, π], [2π, 3π], etc, and
concave up on [π, 2π] and many others.
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As the graphs of f(x) = (x+ 2)2 + 1 and g(x) = ex demonstrate, if the graph of a function is concave
up on an interval [a, b] then the derivative of the function is increasing on the interval. (For the graph of
f(x) = (x+ 2)

2
+1 on the interval [−5, 1], the f ′(x) is −6 at −5, it is zero at −2, it is 4 at 0, 5 at 12 , etc; so

it is increasing. Actually, the derivative is f ′(x)− 2x+ 4, which is an increasing function.

Example 1 The graph of u(x) = sinx is concave up on the interval [−π, 0] and we have u′(x) = cosx which
is increasing on [−π, 0].
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Graph of u on [−π, 0] Graph of u′ on [−π, 0]

Since an increasing function has a positive derivative, this suggests that if a given function has a concave
up graph on an interval [a, b] then its second derivative is positive on [a, b], (because it is the derivative of
the increasing function f ′(x)). This is what we use here to identify concave up graphs. More precisely, the
graph of a function f is concave up on an interval [a, b] if f ′′(x), (the second derivative of f), is positive
on [a, b] .

The graphs of h(x) = −2x2 + 5 and v(x) = 3 + 1
x , x < 0 suggest that if a function has a concave down

graph on an interval [a, b] then its derivative is decreasing, therefore its second derivative should be negative
on [a, b]. We use this observation to identify concave down graphs. More precisely, the graph of a function
f is concave down on an interval [a, b] if f ′′(x), (the second derivative of f), is negative on [a, b] .

Example 2 Consider the function f(x) = x3 − x2 − 4x+ 4. Its second derivative is f ′′(x) = 6x− 2. This
is positive when x > 1

3 and negative when x <
1
3 . Therefore its graph is concave up on the interval

(
1
3 ,∞

)
,

and concave down on
(
−∞, 13

)
.
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At the number x = 1
3 the graph changes from being concave down, (to the left of 13), to being concave up.

Such a number is called a point of inflection for the function.

Example 3 Let g(x) = −2x3. Then g′′(x) = −12x which is positive on (−∞, 0) and negative on (0,∞).
The graph is concave up on (−∞, 0) and concave down on (0,∞).
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Its point of inflection is x = 0.

The Second Derivative Test for Maxima/Minima

If a number c is a point of relative maximum for a function f then the graph of f must be concave down
on some interval [a, b] containing c, (see the point c = −1 in the figure below). We observed that in such a
case, the second derivative of f should be negative on the interval. In particular, f ′′(c) should be negative.
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The exact opposite happens when c is a point of relative minimum for f . In that case the graph of f must
be concave up on some interval [a, b] containing c, therefore f ′′(x) should be positive on [a, b]. In particular,
f ′′(c) should be positive.
We already noted that a point of relative maximum or relative minimum for a function f is a critical

point of f . Therefore the above observations lend support to the following second derivative test for the
nature of a critical point:

• If c is a critical point of a function f and f ′′(c) is negative, then c is a point of relative maximum.

• If c is a critical point of a function f and f ′′(c) is positive, then c is a point of relative minimum.

For functions whose second derivatives are easy to determine, the second derivative test may be quicker
to apply than the slope method we used in earlier

Example 4 Consider the function f(x) = 4+ 18x+ 3
2x

2− 2x3 we met earlier, (page ??). Its critical points
are the numbers x such that

f ′(x) = 18 + 3x− 6x2 = −3 (2x+ 3) (x− 2) = 0

They are x = 2 and x = − 32 . To establish their nature, we determine the second derivative of f then evaluate
it at 2 and − 32 . It turns out to be f

′′(x) = 3− 12x and

f ′′(2) = 3− 24 = −21
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which is negative. Therefore c = 2 is a point of relative maximum for f . On the other hand,

f ′′(− 32 ) = 3− 12(−
3
2 ) = 21

which is positive. Therefore c = − 32 is a point of relative minimum for f .

Remark 5 Unfortunately, if f ′′(c) = 0 at a critical point c, then the second derivative test shades no light
on the nature of the critical point. As the example below show, it could be a point of relative minimum, a
point of relative maximum, or neither.

Example 6 Let f(x) = 1 + x4, h(x) = 3 − (x+ 1)4, and g(x) = 2 (x− 1)3 − 1. The second derivative of
f ,(it happens to be 12x2), is zero at its critical point c = 0, which is a point of relative minimum. The
second derivative of h ,(it happens to be −12 (x+ 1)2), is zero at its critical point c = −1, which is a point
of relative maximum. The second derivative of g, (it happens to be 12 (x− 1)), is zero at its critical point
c = 1 which is neither a point of relative maximum nor a point of relative minimum.
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f(x) = 1 + x4 h(x) = 3− (x+ 1)4 g(x) = 2 (x− 1)3 − 1

If you get a critical point c such that f ′′(c) = 0, use the slope
method we introduced in Example ?? to establish its nature.

Exercise 7

1. Determine the interval or intervals where the graph of w(x) = x4 − x2 + 3 is concave up or concave
down. What are the points of inflection of w (if any)?

2. Determine the interval or intervals where the graph of h(x) = x5 − x3 + 5 is concave up or concave
down. What are the points of inflection of h (if any)?

3. In each case determine the critical point(s) of the given function then use the second derivative test to
establish the nature of every critical point.

(a) u(x) = x2 + 3x+ 1 (b) g(x) = x4 − 4x2 − 3 (c) f(x) = xex

4. For the function f(x) =
√
x2 + 4x+ 7, which of the two tests; the slope method of Example ?? on page

?? and then the second derivative test, is quicker to establish the nature of its critical point?

5. Use an appropriate method to establish the nature of each critical point of the given function, then
sketch its graph.

(a) h(x) = x2 (6− x) (b) w(x) = x4 − 2x2 + 3 (c) g(x) = x6 − 3x4

(e) f(x) = x2−1
x−4 (f) v(x) = x+ 4/x (g) u(x) = x

9+x2

6. Show that if f(x) = x2√
x2−4 then f ′(x) = x3−8x

(x2−4)3/2 . Now determine its vertical asymptotes and its

critical points, (there are three of them). Establish the nature of each critical point then sketch the
graph.
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7. You are given f with formula f(x) = x4 − 32x+ 4.

(a) Determine its critical point, (it has only one), and establish its nature.

(b) Sketch the graph of f and use it to estimate the roots of the equation x4 − 32x+ 4 = 0
(c) Use Newton’s method to determine the smallest root accurately to 3 decimal places. (Only the

smallest root is required more accurately.)

8. Let n be a positive integer. Determine the nth derivative of:

(a) f(x) = sinx (b) g(x) = eax (c) u(x) = xex (d) h(x) = 1
x

9. In the given figure, the circle has center O and radius 2 units. BD and OC intersect at R, ABDE is
a rectangle, BCD is an isosceles triangle and so is EFA, with CB = CD = FA = FE. Each of the
angles BOC and DOC is x radians.
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(a) Show that RC has length 2− 2 cosx and BD has length 4 sinx.

(b) Prove that the area of the polygon ABCDEF is 8 sinx+ 8 sinx cosx.

(c) What is the largest possible area of such a polygon?

10. According to the product rule, the derivative of f(x)g(x) is f ′(x)g(x)+g′(x)f(x). Show that the second
derivative of f(x)g(x) is

f ′′(x)g(x) + 2f ′(x)g′(x) + g′′(x)f(x)

(a) What is the third derivative of f(x)g(x)?

(b) What is the nth derivative of f(x)g(x), where n is a positive integer?

11. Sketch on the same axes, the graphs of f(x) = sinx, (x in radians), and g(x) = x−1. Use the sketches
to determine an approximate root of the equation sinx = x− 1 then use Newton’s method to calculate
it accurately to 4 decimal places.

12. A more precise definition of a concave up graph:

(a) The graph of a function f is concave up on an interval if it satisfies the following condition: Given
any two points P (a, f(a)) and Q (b, f(b)) on the graph, no point R on the chord PQ is below the
graph of f . (See the figure below.)
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The equation of the chord PQ is y(x) =
[
f(b)−f(a)

b−a

]
(x− a) + f(a). A number x between a and b

may be written as
x = (1− t) a+ tb

where 0 ≤ t ≤ 1. If R(x, y(x)) is a point on the chord PQ and S is the point on the graph of f
with the same x coordinate, show that R has coordinates ((1− t) a + bt, (1 − t)f(a) + tf(b)) and
S has coordinates ((1− t) a+ bt, f((1− t)a+ tb)). Use the fact that S must be below R in order
for the graph to be concave up to deduce that

f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b)

for all 0 ≤ t ≤ 1. Thus the graph of a function f is concave up if for any points a and
b in its domain and any number t between 0 and 1, f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b).

(b) In this part of the question, you are required to show that if the second derivative of a function f is
positive on an interval [a, b] then its graph is concave up; i.e. f((1− t)a+ tb) ≤ (1− t)f(a)+ tf(b)
for all points a and b in the interval and for all 0 ≤ t ≤ 1. To get started, use the mean value
theorem to show that there is a number θ between b and (1− t)a+ tb such that

f(b)− f ((1− t)a+ tb) = (b− a) (1− t) f ′(θ) (1)

Multiply both sides of (1) by t and solve to get

tf(b) = tf ((1− t)a+ tb) + t (1− t) (b− a) f ′(θ) (2)

Also show that there is a number α between a and (1− t) a+ tb such that

(1− t) f(a) = −t (1− t) (b− a) f ′(α) + (1− t) f ((1− t) a+ tb) (3)

Add (2) to (3) and deduce that

(1− t)f(a) + tf(b) = f((1− t)a+ tb) + t (1− t) (b− a) (f ′(θ)− f ′(α))

Use the Mean value Theorem to show that (f ′(θ)− f ′(α)) ≥ 0 then deduce that (1−t)f(a)+tf(b) ≥
f((1− t)a+ tb)
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