

Higher Order Derivatives

A higher order derivative is *the derivative of a derivative*. For example, let $f(x) = 3x^2 - \frac{2}{x}$. Its derivative is $f'(x) = 6x + \frac{2}{x^2}$. The derivative of $f'(x)$ is an example of a higher order derivative of f , called the second derivative of f , and denoted by $f''(x)$. Thus

$$f''(x) = 6 - \frac{4}{x^3}.$$

One may also take the derivative of $f''(x)$. The result is called the third order derivative of f and is denoted by $f'''(x)$. Therefore $f'''(x) = \frac{12}{x^4}$. Fourth and higher order derivatives of f are calculated in a similar way.

For another example, consider $g(x) = 4x^4 - 3x^2 + 5x - 3$. Its first derivative is

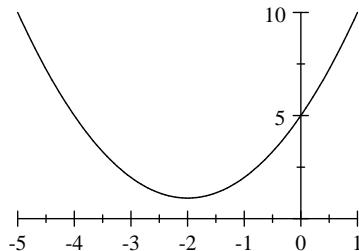
$$g'(x) = 16x^3 - 6x + 5.$$

The second derivative is $g''(x) = 48x^2 - 6$. The third derivative is $g'''(x) = 96x$, the fourth is written as $g^{(4)}(x)$ and it is the constant function $g^{(4)}(x) = 96$. The fifth and higher derivatives are all zeros.

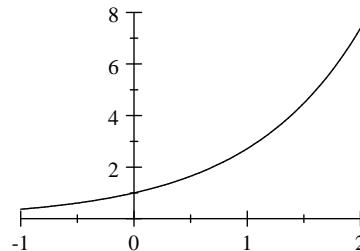
For practice, find the first and second derivative of each of the following:

(a) $f(x) = 3x^5 - 2x^3 + x - 3$	(b) $g(x) = 2 \sin x - 4 \cos x$	(c) $h(x) = 4e^{3x}$
(d) $u(x) = 8x \cos x - 1$	(e) $v(x) = 4 - x \sin x$	(f) $w(x) = \frac{2}{x^2}$
(g) $f(x) = \frac{4x}{7} - \frac{7}{4x^2} + 5$	(h) $g(x) = 5 - 3 \sin \frac{1}{2}x$	(i) $h(x) = 2 \sec \pi x$

Our first use of second order derivatives is to determine shapes of graphs. There are graphs like that of $f(x) = (x + 2)^2 + 1$ and $g(x) = e^x$ shown below, shaped like right-side up bowls or part of right-side up bowls.

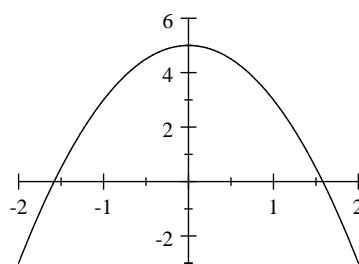


Graph of $f(x) = (x + 2)^2 + 1$

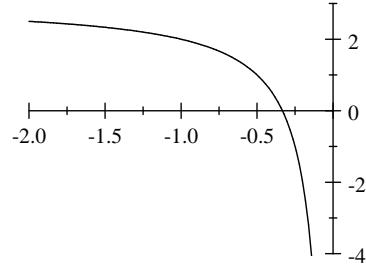


Graph of $g(x) = e^x$

We call them **concave up** graphs. A more precise definition is given in Exercise 12 on page 5. Their counter-parts, like the graphs of $h(x) = -2x^2 + 5$ and $v(x) = 3 + \frac{1}{x}$, $x < 0$, are shaped like upside-down bowls or part of upside-down bowls.

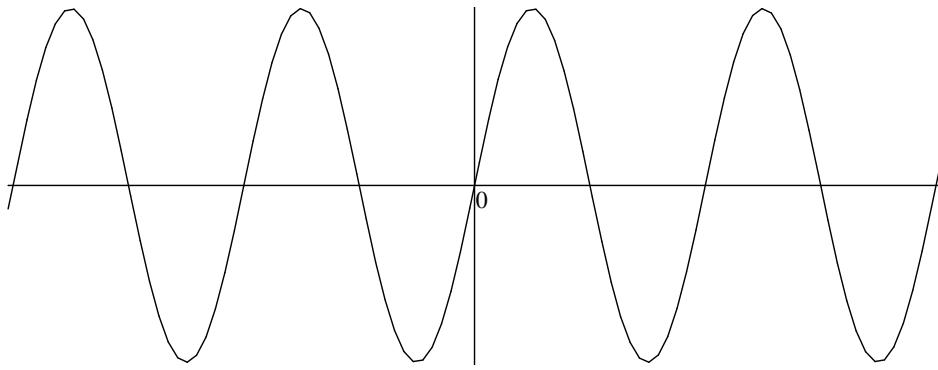


Graph of $h(x) = -2x^2 + 5$



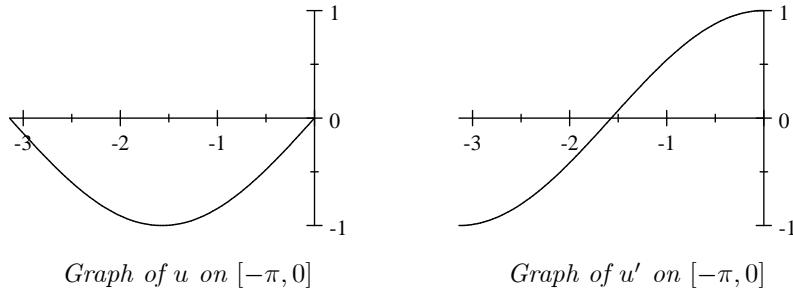
Graph of $v(x) = 3 + \frac{1}{x}$, $x < 0$

They are called **concave down** graphs. Some graphs are concave up on some intervals and concave down on others. An example is the graph of $\sin x$. It is concave down on intervals like $[0, \pi]$, $[2\pi, 3\pi]$, etc, and concave up on $[\pi, 2\pi]$ and many others.



As the graphs of $f(x) = (x + 2)^2 + 1$ and $g(x) = e^x$ demonstrate, if the graph of a function is concave up on an interval $[a, b]$ then the derivative of the function is increasing on the interval. (For the graph of $f(x) = (x + 2)^2 + 1$ on the interval $[-5, 1]$, the $f'(x)$ is -6 at -5 , it is zero at -2 , it is 4 at 0 , 5 at $\frac{1}{2}$, etc; so it is increasing. Actually, the derivative is $f'(x) = 2x + 4$, which is an increasing function.)

Example 1 The graph of $u(x) = \sin x$ is concave up on the interval $[-\pi, 0]$ and we have $u'(x) = \cos x$ which is increasing on $[-\pi, 0]$.



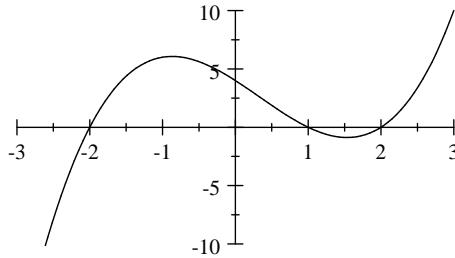
Graph of u on $[-\pi, 0]$

Graph of u' on $[-\pi, 0]$

Since an increasing function has a positive derivative, this suggests that if a given function has a concave up graph on an interval $[a, b]$ then its second derivative is positive on $[a, b]$, (because it is the derivative of the increasing function $f'(x)$). This is what we use here to identify concave up graphs. More precisely, *the graph of a function f is concave up on an interval $[a, b]$ if $f''(x)$, (the second derivative of f), is positive on $[a, b]$.*

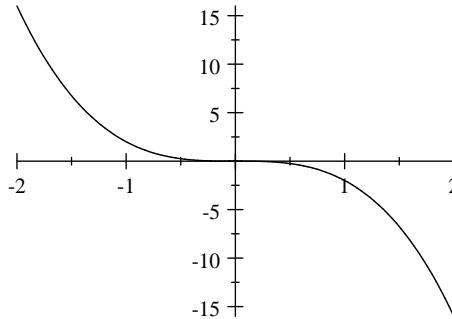
The graphs of $h(x) = -2x^2 + 5$ and $v(x) = 3 + \frac{1}{x}$, $x < 0$ suggest that if a function has a concave down graph on an interval $[a, b]$ then its derivative is decreasing, therefore its second derivative should be negative on $[a, b]$. We use this observation to identify concave down graphs. More precisely, *the graph of a function f is concave down on an interval $[a, b]$ if $f''(x)$, (the second derivative of f), is negative on $[a, b]$.*

Example 2 Consider the function $f(x) = x^3 - x^2 - 4x + 4$. Its second derivative is $f''(x) = 6x - 2$. This is positive when $x > \frac{1}{3}$ and negative when $x < \frac{1}{3}$. Therefore its graph is concave up on the interval $(\frac{1}{3}, \infty)$, and concave down on $(-\infty, \frac{1}{3})$.



At the number $x = \frac{1}{3}$ the graph changes from being concave down, (to the left of $\frac{1}{3}$), to being concave up. Such a number is called a **point of inflection** for the function.

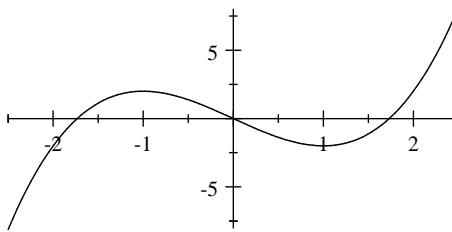
Example 3 Let $g(x) = -2x^3$. Then $g''(x) = -12x$ which is positive on $(-\infty, 0)$ and negative on $(0, \infty)$. The graph is concave up on $(-\infty, 0)$ and concave down on $(0, \infty)$.



Its point of inflection is $x = 0$.

The Second Derivative Test for Maxima/Minima

If a number c is a point of relative maximum for a function f then the graph of f must be concave down on some interval $[a, b]$ containing c , (see the point $c = -1$ in the figure below). We observed that in such a case, the second derivative of f should be negative on the interval. In particular, $f''(c)$ should be negative.



The exact opposite happens when c is a point of relative minimum for f . In that case the graph of f must be concave up on some interval $[a, b]$ containing c , therefore $f''(x)$ should be positive on $[a, b]$. In particular, $f''(c)$ should be positive.

We already noted that a point of relative maximum or relative minimum for a function f is a critical point of f . Therefore the above observations lend support to the following **second derivative test** for the nature of a critical point:

- If c is a critical point of a function f and $f''(c)$ is negative, then c is a point of relative maximum.
- If c is a critical point of a function f and $f''(c)$ is positive, then c is a point of relative minimum.

For functions whose second derivatives are easy to determine, the second derivative test may be quicker to apply than the slope method we used in earlier

Example 4 Consider the function $f(x) = 4 + 18x + \frac{3}{2}x^2 - 2x^3$ we met earlier, (page ??). Its critical points are the numbers x such that

$$f'(x) = 18 + 3x - 6x^2 = -3(2x + 3)(x - 2) = 0$$

They are $x = 2$ and $x = -\frac{3}{2}$. To establish their nature, we determine the second derivative of f then evaluate it at 2 and $-\frac{3}{2}$. It turns out to be $f''(x) = 3 - 12x$ and

$$f''(2) = 3 - 24 = -21$$

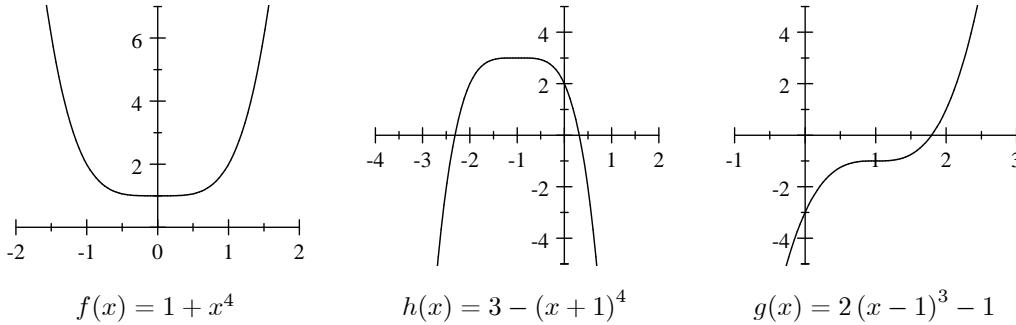
which is negative. Therefore $c = 2$ is a point of relative maximum for f . On the other hand,

$$f''\left(-\frac{3}{2}\right) = 3 - 12\left(-\frac{3}{2}\right) = 21$$

which is positive. Therefore $c = -\frac{3}{2}$ is a point of relative minimum for f .

Remark 5 Unfortunately, if $f''(c) = 0$ at a critical point c , then the second derivative test shades no light on the nature of the critical point. As the example below show, it could be a point of relative minimum, a point of relative maximum, or neither.

Example 6 Let $f(x) = 1 + x^4$, $h(x) = 3 - (x + 1)^4$, and $g(x) = 2(x - 1)^3 - 1$. The second derivative of f , (it happens to be $12x^2$), is zero at its critical point $c = 0$, which is a point of relative minimum. The second derivative of h , (it happens to be $-12(x + 1)^2$), is zero at its critical point $c = -1$, which is a point of relative maximum. The second derivative of g , (it happens to be $12(x - 1)$), is zero at its critical point $c = 1$ which is neither a point of relative maximum nor a point of relative minimum.



If you get a critical point c such that $f''(c) = 0$, use the slope method we introduced in Example ?? to establish its nature.

Exercise 7

1. Determine the interval or intervals where the graph of $w(x) = x^4 - x^2 + 3$ is concave up or concave down. What are the points of inflection of w (if any)?
2. Determine the interval or intervals where the graph of $h(x) = x^5 - x^3 + 5$ is concave up or concave down. What are the points of inflection of h (if any)?
3. In each case determine the critical point(s) of the given function then use the second derivative test to establish the nature of every critical point.

$$(a) u(x) = x^2 + 3x + 1 \quad (b) g(x) = x^4 - 4x^2 - 3 \quad (c) f(x) = xe^x$$

4. For the function $f(x) = \sqrt{x^2 + 4x + 7}$, which of the two tests; the slope method of Example ?? on page ?? and then the second derivative test, is quicker to establish the nature of its critical point?
5. Use an appropriate method to establish the nature of each critical point of the given function, then sketch its graph.

$$(a) h(x) = x^2(6 - x) \quad (b) w(x) = x^4 - 2x^2 + 3 \quad (c) g(x) = x^6 - 3x^4$$

$$(e) f(x) = \frac{x^2 - 1}{x - 4} \quad (f) v(x) = x + 4/x \quad (g) u(x) = \frac{x}{9 + x^2}$$

6. Show that if $f(x) = \frac{x^2}{\sqrt{x^2 - 4}}$ then $f'(x) = \frac{x^3 - 8x}{(x^2 - 4)^{3/2}}$. Now determine its vertical asymptotes and its critical points, (there are three of them). Establish the nature of each critical point then sketch the graph.

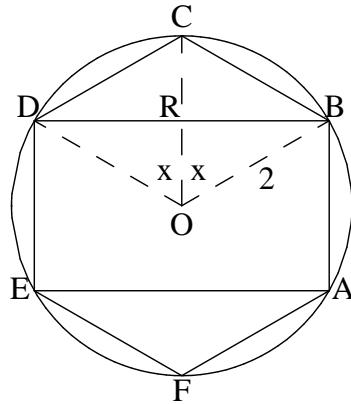
7. You are given f with formula $f(x) = x^4 - 32x + 4$.

- (a) Determine its critical point, (it has only one), and establish its nature.
- (b) Sketch the graph of f and use it to estimate the roots of the equation $x^4 - 32x + 4 = 0$
- (c) Use Newton's method to determine the smallest root accurately to 3 decimal places. (Only the smallest root is required more accurately.)

8. Let n be a positive integer. Determine the n th derivative of:

$$(a) f(x) = \sin x \quad (b) g(x) = e^{ax} \quad (c) u(x) = xe^x \quad (d) h(x) = \frac{1}{x}$$

9. In the given figure, the circle has center O and radius 2 units. BD and OC intersect at R , $ABDE$ is a rectangle, BCD is an isosceles triangle and so is EFA , with $CB = CD = FA = FE$. Each of the angles BOC and DOC is x radians.



(a) Show that RC has length $2 - 2 \cos x$ and BD has length $4 \sin x$.

(b) Prove that the area of the polygon $ABCDEF$ is $8 \sin x + 8 \sin x \cos x$.

(c) What is the largest possible area of such a polygon?

10. According to the product rule, the derivative of $f(x)g(x)$ is $f'(x)g(x) + g'(x)f(x)$. Show that the second derivative of $f(x)g(x)$ is

$$f''(x)g(x) + 2f'(x)g'(x) + g''(x)f(x)$$

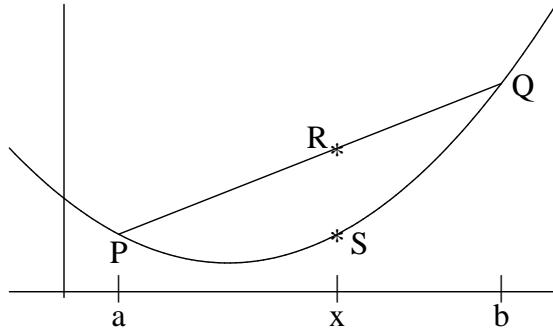
(a) What is the third derivative of $f(x)g(x)$?

(b) What is the n th derivative of $f(x)g(x)$, where n is a positive integer?

11. Sketch on the same axes, the graphs of $f(x) = \sin x$, (x in radians), and $g(x) = x - 1$. Use the sketches to determine an approximate root of the equation $\sin x = x - 1$ then use Newton's method to calculate it accurately to 4 decimal places.

12. **A more precise definition of a concave up graph:**

- (a) The graph of a function f is concave up on an interval if it satisfies the following condition: Given any two points $P(a, f(a))$ and $Q(b, f(b))$ on the graph, no point R on the chord PQ is below the graph of f . (See the figure below.)



The equation of the chord PQ is $y(x) = \left[\frac{f(b) - f(a)}{b - a} \right] (x - a) + f(a)$. A number x between a and b may be written as

$$x = (1 - t)a + tb$$

where $0 \leq t \leq 1$. If $R(x, y(x))$ is a point on the chord PQ and S is the point on the graph of f with the same x coordinate, show that R has coordinates $((1 - t)a + tb, (1 - t)f(a) + tf(b))$ and S has coordinates $((1 - t)a + tb, f((1 - t)a + tb))$. Use the fact that S must be below R in order for the graph to be concave up to deduce that

$$f((1 - t)a + tb) \leq (1 - t)f(a) + tf(b)$$

for all $0 \leq t \leq 1$. Thus the graph of a function f is concave up if for any points a and b in its domain and any number t between 0 and 1, $f((1 - t)a + tb) \leq (1 - t)f(a) + tf(b)$.

(b) In this part of the question, you are required to show that if the second derivative of a function f is positive on an interval $[a, b]$ then its graph is concave up; i.e. $f((1 - t)a + tb) \leq (1 - t)f(a) + tf(b)$ for all points a and b in the interval and for all $0 \leq t \leq 1$. To get started, use the mean value theorem to show that there is a number θ between b and $(1 - t)a + tb$ such that

$$f(b) - f((1 - t)a + tb) = (b - a)(1 - t)f'(\theta) \quad (1)$$

Multiply both sides of (1) by t and solve to get

$$tf(b) = tf((1 - t)a + tb) + t(1 - t)(b - a)f'(\theta) \quad (2)$$

Also show that there is a number α between a and $(1 - t)a + tb$ such that

$$(1 - t)f(a) = -t(1 - t)(b - a)f'(\alpha) + (1 - t)f((1 - t)a + tb) \quad (3)$$

Add (2) to (3) and deduce that

$$(1 - t)f(a) + tf(b) = f((1 - t)a + tb) + t(1 - t)(b - a)(f'(\theta) - f'(\alpha))$$

Use the Mean value Theorem to show that $(f'(\theta) - f'(\alpha)) \geq 0$ then deduce that $(1 - t)f(a) + tf(b) \geq f((1 - t)a + tb)$