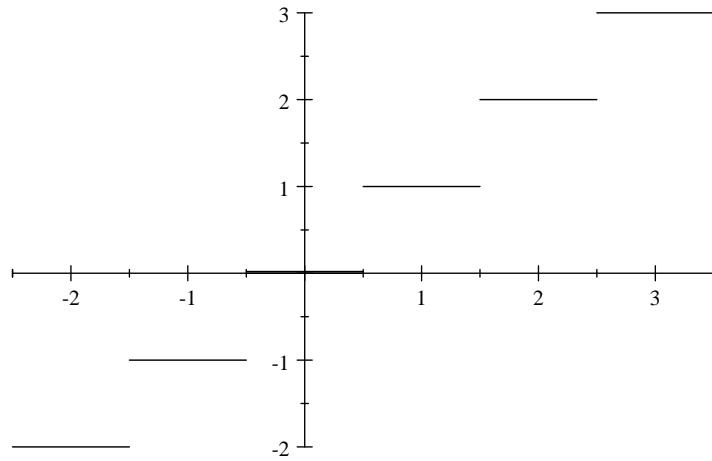


Limits From Below and Limits From Above

The following example illustrates the idea of a limit from below and a limit from above.

Example 1 Imagine rounding off a number to the nearest whole number. This means that you replace a given number by the integer nearest to it on the number line. For example, since 5.184 is between 5 and 6, but it is closer to 5, you round it off to 5. A number in the middle of two integers will, (by agreement), be rounded off to the larger of the two integers. Thus 3.5 is rounded off to 4 and -16.5 is rounded off to -16 . Let f be the function that assigns the nearest whole number to a given number x as described. Part of its graph is given below.



Take a number like 1.5 in the middle of two integers. Every number x that is close to 1.5 and is also to the left of 1.5 on the number line, (examples are 1.4, 1.488, and 1.4999), gives a value $f(x)$ close to 1 (actually equal to 1). For this reason, we say that f has limit 1 as x approaches 1.5 from below, (or from the left), and write $\lim_{x \rightarrow 1.5^-} f(x) = 1$.

On the other hand, numbers x close to 1.5, but to the right of 1.5, (example, 1.51, 1.5003, and 1.500008), give values $f(x)$ close to 2, (actually equal to 2). We say that f has limit 2 as x approaches 1.5 from above, (or from the right), and write $\lim_{x \rightarrow 1.5^+} f(x) = 2$.

The following are the general definitions of limits from below/above:

Definition 2 A function f has limit l as x approaches a given number c from below if numbers x that are; (i) **to the left of** c , and (ii) **are close to** c , give values $f(x)$ that are close to l . The number l is called the limit of f at c from below, or the left limit of f at c , and is denoted by $\lim_{x \rightarrow c^-} f(x)$.

As we pointed out before giving definition ??, numbers close to l are in an interval $(l - \varepsilon, l + \varepsilon)$ for some suitable positive number ε . Likewise, numbers which are close to c and are also to the left of c are in some interval $(c - \delta, c)$ for some suitable positive number δ . This suggests the following more precise definition of a limit from the left, (or from below).

Definition 3 A function f has limit l as x approaches a number c from below if given any positive number ε , we can find a positive number δ such that $f(x) \in (l - \varepsilon, l + \varepsilon)$ for all $x \in (c - \delta, c)$. Alternatively, given any $\varepsilon > 0$ we can find a $\delta > 0$ such that $|f(x) - l| < \varepsilon$ if $c - \delta < x < c$.

Definition 4 A function f has limit m as x approaches a given number c from above if numbers x that are; (i) **to the right of** c , and (ii) **are close to** c , give values $f(x)$ that are close to m . The number m is called the limit of f at c from above, or the right limit of f at c , and is denoted by $\lim_{x \rightarrow c^+} f(x)$.

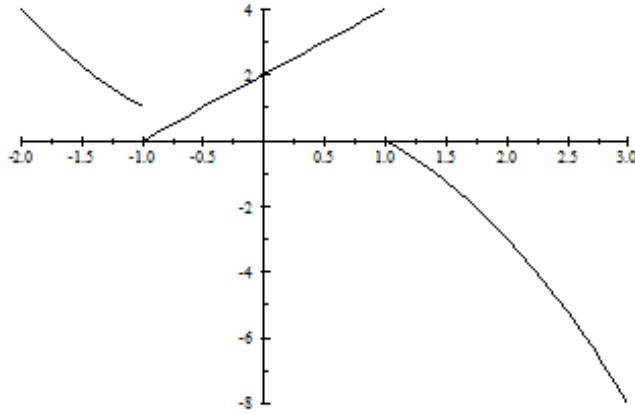
Since numbers which are close to c and are also to the right of c are in some interval $(c, c + \delta)$ for some suitable positive number δ , a more precise definition of a limit from the right (or from above) is the following:

Definition 5 A function f has limit l as x approaches a number c from above if given any positive number ε , we can find a positive number δ such that $f(x) \in (l - \varepsilon, l + \varepsilon)$ for all $x \in (c, c + \delta)$. Alternatively, given any $\varepsilon > 0$ we can find a $\delta > 0$ such that $|f(x) - l| < \varepsilon$ if $c < x < c + \delta$.

Example 6 Consider the function g with formula

$$g(x) = \begin{cases} x^2 & \text{if } -2 \leq x \leq -1 \\ 2x + 2 & \text{if } -1 < x \leq 1 \\ 1 - x^2 & \text{if } 1 < x \leq 3 \end{cases}$$

Its graph is given below.



Take a number like $c = 1$. The graph and formula for g suggest that $\lim_{x \rightarrow 1^+} g(x) = 0$ and $\lim_{x \rightarrow 1^-} g(x) = 4$. In the case of $c = -1$, the graph and formula suggest that $\lim_{x \rightarrow -1^+} g(x) = 0$ and $\lim_{x \rightarrow -1^-} g(x) = 1$.

Remark 7 If a function f has limit l as x approaches a number c then all the numbers x close to c , (whether to the left or to the right of c), give values $f(x)$ close to l . Therefore f must have limit l as x approaches c from below and from above. In other words,

$$\lim_{x \rightarrow c^-} f(x) = l = \lim_{x \rightarrow c^+} f(x)$$

Remark 8 It follows from Remark 7 that if the left limit of a function g at a point c is different from its right limit, (in other words, if $\lim_{x \rightarrow c^-} g(x) \neq \lim_{x \rightarrow c^+} g(x)$), then g has no limit at c .