
The Mean Value Theorem and Some Applications

The Mean Value Theorem is a statement about chords and tangents drawn on smooth graphs. Intuitively,
a function f has a smooth graph on an interval [a, b] if we can draw a tangent at every point (x, f(x)),
x ∈ [a, b], on its graph The left figure below is the graph of f(x) = x2 + x on the interval [−3.5, 4.5],
(arbitrarily chosen). Its graph is smooth since we can draw a tangent at any point (x, f(x)). The graph
in the second figure is not smooth on the interval [−3, 3] because we cannot draw a tangent at (−1, 2) or
(1.5, 3.4) .
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Let f have a smooth graph on an interval [a, b]. Let c and d be points such that a ≤ c < d ≤ b. Consider
the chord PQ joining P (c, f(c)) and Q(d, f(d)) on the graph of f , (we used f(x) = x2 + x, c = −2.5 and
d = 4 in the figure below). Let P ′Q′ be a variable line segment that is always parallel to PQ.
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A chord PQ joining (−3, 6) and (4, 20) PQ and P ′Q ′

The mean value theorem asserts that if you slide P ′Q′ far enough in the right direction, it becomes a tangent
to the graph of f at some point (θ, f(θ)) where θ is between c and d.

­2 2 4

10

20

P

Q

It becomes a tangent

Since the slope of PQ is
f(d)− f(c)

d− c , the theorem asserts that there is a number θ between c and d such

that

f ′(θ) =
f(d)− f(c)

d− c (1)

This is conveniently written as f(d)− f(c) = (d− c) f ′(θ).
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In the case of f(x) = x2 + x and points c = −2.5, d = 4, it turns out that θ is approximately equal to
0.73. We obtained it is by solving the equation

2θ + 1 = f ′(θ) =
f(4)− f(−2.5)
4− (−2.5) =

20− 8.75
6.5

=
11.25

6.5

The theorem is generally stated in the following form:

Theorem 1 (The Mean Value Theorem) Let f have a smooth graph on an interval [a, b] and c, d be
points in [a, b] with c < d. Then there is a number θ between c and d such that f(d)− f(c) = (d− c) f ′(θ).

Note that the theorem does not claim exactly one point θ satisfying the above conditions. It asserts that
there is at least one point; leaving open the possibility of two or more. For example, let f(x) = x3 − 2x2,
and choose c = −1.5 and d = 3.
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The theorem states that there is a number θ between −1.5 and 3 such that

f(3)− f(−1.5) = f ′(θ) (3− (−1.5)) = 4.5f ′(θ).

Since f(3)− f(−1.5) = 9− (−7.875) = 16. 875 and f ′(x) = 3x2 − 4x, θ satisfies the quadratic equation

3
(
θ2
)
− 4θ = 16.875

4.5
= 3.75 or 3θ2 − 4θ − 3.75 = 0

with solutions; θ1 =
4 +
√
16 + 12× 3.75

6
= 1.96 and θ2 =

4−
√
16 + 12× 3.75

6
= −0.64 (to 2 decimal

places). Both numbers are acceptable solutions.

Exercise 2

1. The graphs of f(x) = x3, g(x) = x3 − 3x+ 4, h(x) =
√
6 + 3x, and u(x) = 4x+ 1 are given below.
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Graph of f(x) = x3 Graph of g(x) = x3 − 3x+ 4
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Graph of h(x) =
√
6 + 3x Graph of u(x) = 4x+ 1
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(a) Draw the cord joining the points (−3, f(−3)) and (0, f(0)) then find a number θ between −3 and
0 such that f(0)− f(−3) = 3f ′(θ).

(b) Draw the cord joining the points (−2, g(−2)) and (2, g(2)) then find a number θ between −2 and
2 such that g(2)− g(−2) = 4g′(θ).

(c) Draw the cord joining the points (−2, h(−2)) and (3, h(3)) then find a number θ between −2 and
3 such that h(3)− h(−2) = 5h′(θ)

(d) Draw the cord joining the points (1, u(1)) and (4, u(4)) then find a number θ between 1 and 4
such that u(4)− u(1) = 3u′(θ)

2. Give an example of a function f with a smooth graph on an interval [a, b], and with 3 or more numbers
θ between a and b such that f(b)− f(a) = (b− a)f ′(θ).

3. In this exercise, you have to show that
√
1 + x ≤ 1 + 1

2x for all x ≥ 0. To this end, consider the
function g(x) = 1 + 1

2x−
√
1 + x, x ≥ 0. Show that g′(x) > 0 for all x > 0. Now take any x > 0. By

the mean value theorem, there is a number θ between 0 and x such that g(x)− g(0) = xg′(θ). Explain
why xg′(θ) > 0 and deduce that g(x)− g(0) > 0 for all x > 0. Use this to show that

√
1 + x ≤ 1 + 1

2x
for all x ≥ 0.

Generalized Mean Value Theorem

Let f and g have derivatives on an interval [a, b], and a ≤ c < d ≤ b. By the Mean Value Theorem, there
are points θ and α in (c, d) such that

f(d)− f(c) = (d− c) f ′(θ) and g(d)− g(c) = (d− c) g′(α)

There is no guarantee that θ is the same as α because f and g are different functions. Assume that g′(α) 6= 0.
Then we may divide to get

f(d)− f(c)
g(d)− g(c) =

f ′(θ)

g′(α)
(2)

The Generalized Mean Value Theorem asserts that if g′(x) 6= 0 for all x in (a, b) then, indeed, there is a
single point β in (c, d) such that

f(d)− f(c)
g(d)− g(c) =

f ′(β)

g′(β)
(3)

Here is a very neat proof that uses the Mean Value Theorem.

Consider the function h(x) = f(x)−
(
f(d)− f(c)
g(d)− g(c)

)
g(x). Direct computations, (do them), reveal that

h(c) =
f(c)g(d)− f(d)g(c)

g(d)− g(c) = h(d)

Therefore, by the Mean Value Theorem, there is a point β in (c, d) such that

0 = h(d)− h(c) = (d− c)h′(β) (4)

Substitute h′(β) = f ′(β)−
(
f(d)− f(c)
g(d)− g(c)

)
g′(β) into (4) then divide by (d− c) to get

0 = f ′(β)− f(d)− f(c)
g(d)− g(c) g

′(β)

Since g′(β) 6= 0, (by hypothesis), we may divide by g′(β) and re-arrange the resulting equation to get (3).

Exercise 3

1. Let f(x) = x2 + 4x and g(x) = 2x2 + x + 2, x ≥ 0. Determine f(2)−f(0)
g(2)−g(0) and

f ′(x)
g′(x) then solve the

equation f(2)−f(0)
g(2)−g(0) =

f ′(x)
g′(x) for a number β in (0, 2) such that

f(2)−f(0)
g(2)−g(0) =

f ′(β)
g′(β) .

2. Let f(x) = x2 + 4x and g(x) = x3 + x− 1, Find a number β in (−2, 1) such that f(1)−f(−2)g(1)−g(−2) =
f ′(β)
g′(β) .
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Some Applications of the Mean Value Theorem

We have already noted that if a function f is increasing on an interval [a, b] then the tangents to its graph
have positive slopes, therefore its derivatively f ′(x) cannot be negative. We can now verify the converse;
that if a function g has a positive derivative on an interval [a, b] then it must be increasing on [a, b].

Claim 4 If a function f has a positive derivative on an interval [a, b], then it is increasing on the interval.

To verify the claim, assume that a ≤ x < y ≤ b. By the mean value theorem, there is a number θ between
x and y such that

f(y)− f(x) = (y − x) f ′(θ). (5)

The right hand side of (5) is positive because (y − x) and f ′(θ) are both positive. Therefore f(y) must be
bigger than f(x). Since x and y were arbitrary points in [a, b], this proves that f is increasing on [a, b] .

Claim 5 If a function f has a negative derivative on an interval [a, b], then it is decreasing on the interval.

To see this, assume that a ≤ x < y ≤ b. By the mean value theorem, there is a number θ between x and
y such that

f(y)− f(x) = (y − x) f ′(θ).

This time (y − x) f ′(θ) is negative, because f ′(θ) is negative whereas (y − x) is positive. Therefore f(x)
must be bigger than f(y). Since x and y were arbitrary points in [a, b], f is decreasing on [a, b] .

Claim 6 If the derivative of a function f is zero on an interval [a, b] then f is constant on [a, b].

For a proof, take any number x in [a, b] which is bigger than a. By the mean value theorem, there is a
number θ between x and a such that

f(x)− f(a) = (x− a) f ′(θ) = 0. (6)

This implies that f(x) = f(a). Since x was an arbitrary point in [a, b], f has the constant value f(a) on
[a, b].
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