
Newton’s Method for Calculating Approximate Roots

The following example introduces the essential ideas of Newton’s method.

Example 1 Consider the function f(x) = x3 − 12x+ 5. Its graph is given below.
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The numbers c such that f(c) = 0 are called the solutions, or roots, of the equation x3 − 12x+ 5 = 0. They
are the x-intercepts of the graph of f . To the nearest whole number, they are c1 ' 3, c2 ' 0 and c3 ' −4.
Newton’s method is a procedure for calculating a better approximate solution, given an approximate solution.
For example, the procedure enables us to calculate a better approximate solution of x3 − 12x+ 5 = 0, given
the approximate solution c1 = 3. The procedure is pretty straight-forward. We draw the tangent to the graph
of f at (3, f(3)) = (3,−4) then determine its x-intercept, which we may denote by x1. The graph below of
a magnified section of the curve and its tangent at (3,−4), shows clearly that x1 is a better approximate
solution than 3.
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x1 is nearer the solution than 3

In practice we do not draw the tangent. We simply determine its equation then calculate its x-intercept.
Since f ′(x) = 3x2 − 12, its slope is f ′(3) = 3(3)2 − 12 = 15, therefore its equation is given by

y + 4 = 15 (x− 3) or y = 15x− 49

Its x-intercept may be obtained by solving the equation

15x− 49 = 0

The result is x1 = 49
15 . Since f(

49
15 ) = 0.66, (to 2 decimal places), which is closer to zero than f(3) = −4,

x1 =
49
15 is definitely a better approximate solution of the given equation than 3.
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To generalize, suppose f is a given function and x0 is an approximate solution of the equation f(x) = 0.
(We are assuming that x0 has been determined by some means, e.g. from a sketch of the graph of f .)
Consider the tangent to the graph of f at (x0, f(x0)). Its slope is f ′(x0), therefore its equation is

y = f(x0) + (x− x0) f ′(x0).

Denote its x-intercept by x1. Then under suitable conditions, x1 is a better approximate solution of the
equation f(x) = 0 than x0. You may determine x1 by solving the equation

f(x0) + (x− x0) f ′(x0) = 0

Remove parentheses and rearrange to get xf ′(x0) = x0f ′(x0)−f(x0). Now divide by f ′(x0), and you should
get

x = x0 −
f(x0)

f ′(x0)

We have therefore shown that:

• If x0 is an approximate solution of the equation f(x) = 0, then x1 = x0 −
f(x0)

f ′(x0)
is generally a

better approximate solution of the equation than x0. This procedure for calculating better approximate
solutions is called Newton’s method.

Exercise 2

1. The graph of f(x) =
√
x+ x− 3 below shows that the equation

√
x+ x− 3 = 0 has a solution close to

2. Use x0 = 2 as an approximate solution

2 4 6

­4

­2

0

2

4

6

8

to calculate a better approximate solution. You can actually solve this equation using the quadratic
formula. Solve it and compare the result to the approximate solution.

2. Use x0 = −4 as an approximate solution to the equation x3 − 12x+ 5 = 0 of Example 1 to calculate a
better approximate solution of the equation.

3. Let f(x) = x2 − 15. We may view the square root of 15 as a solution to the equation f(x) = 0. Take
x0 = 4 as an approximate value of

√
15 and use Newton’s method to calculate a better approximate

value of
√
15.

4. Use a suitable function and follow the steps in question 3 above to determine an approximate value of
3
√
29.2 with the help of Newton’s method.

5. Show that if x0 is a root of the equation f(x) = 0, then applying Newton’s method to x0 does not
provide anything new.

Repeated application of Newton’s method

Consider a function f and the equation f(x) = 0. By Newton’s method, if x0 is an approximate solution of
f(x) = 0 then a better approximate solution is

x1 = x0 −
f(x0)

f ′(x0)
.
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This is called the first iterate, or the first approximation given by Newton’s method. It may be used to
get an even better approximate solution x2, called the second iterate, or the second approximation. As you
would expect, it is the x-intercept of the tangent at (x1, f(x1)) and it is given by

x2 = x1 −
f(x1)

f ′(x1)
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This may be used to get a third approximation

x3 = x2 −
f(x2)

f ′(x2)
.

In general, if you have an nth approximation xn, you may calculate

xn+1 = xn −
f(xn)

f ′(xn)
.

Example 3 Consider the approximate solution x1 = 49
15 for the equation x

3 − 12x + 5 = 0 in Example 1.
We may use it to get an even better approximate solution x2 given by

x2 = x1 −
f(x1)

f ′(x1)
=
49

15
−
f( 4915 )

f ′( 4915 )
=
49

15
−
( 4915 )

3 − 12( 4915 ) + 5
3( 4915 )

2 − 12
= 3.2337 to 4 dec. pl.

Since f(3.2337) = (3.2337)3 − 12(3.2337) + 5 = 0.009804 and f(x1) = f( 4915 ) = 0.66, x2 is definitely a better
approximate solution than x1. (Use x2 to get x3.)

Exercise 4

1. The graph of f(x) =
√
x+x2−3 is given below. It shows that x0 = 1 is an approximate solution of the

equation f(x) = 0. Use it to determine the first and second approximations x1, and x2 respectively,
given by Newton’s method. Round off x2 to 3 dec. pl.
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2. Sketch the graph of f(x) = x3 + 3x2 + 2 and use it to verify that the equation x3 + 3x2 + 2 = 0 has
one real root. Use the sketch to estimate the root then use Newton’s method to determine two better
approximations.

3. There is no guarantee that Newton’s method will always work. For example, consider the equation
(x+ 1)

1/3
= 0. Of course we know its solution; it is x = −1. Pretend that you do not know it. The

graph of f(x) = (1 + x)1/3 is given below.
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Take x0 = 0 as an approximate solution and determine x1. Next, use x1 to determine x2. Also, draw
the tangents at (x0, f(x0)) and (x1, f(x1)) . Can you see why it fails in this case?

4. Say you want to calculate the root of x3 − 12x + 5 = 0 in Example 1, which is close to 3, accurately
to 5 decimal places. You compute x1, x2, x3, . . . and stop when there is no change in the first five
decimal places of your iterate. Recall that we found that x1 = 49

15 = 3.26666667, and x2 = 3.23374046.
We calculate x3 using the equation

x3 = x2 −
f(x2)

f ′(x2)
= 3.233193843.

There is a change in the fourth decimal place so we compute x4. It turns out to be

x4 = x3 −
f(x3)

f ′(x3)
= 3.233193694.

Since there is no change in the first 5 decimal places, we stop. We give the root as 3.23319 correct to
5 decimal places.

Use a similar procedure to determine the root of
√
x+x2− 3 = 0 that is between 1 and 2, correct

to 5 decimal places.

5. Consider the function f(x) = x3 + x − 3. Since f(1) = −1 and f(2) = 7, the graph of f crosses the
x-axis between x = 1 and x = 2. It follows that the equation x3+x− 3 = 0 has a root between 1 and 2.
We may take x = 1 or x = 2 as an approximate root of this equation. But of the two, x = 1 is probably
a better approximation because f(1) is closer to 0 than f(2). Use it to calculate the root correct to 2
decimal places.

6. Show that the equation x4 + x3 + 4x− 1 = 0 has a root between 0 and 1 then use Newton’s method to
calculate it accurately to 2 decimal places.
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