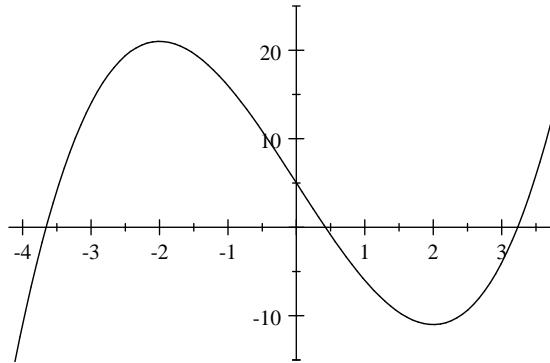


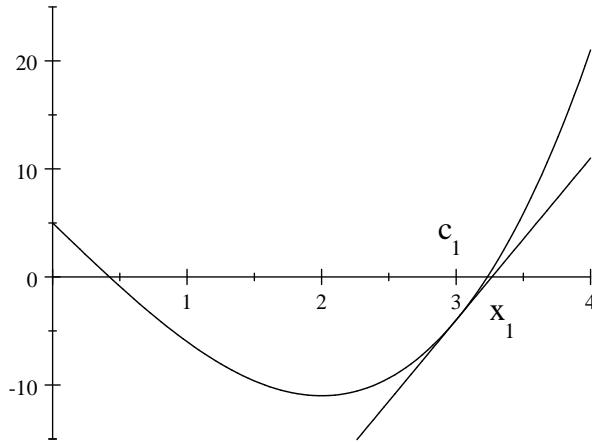
Newton's Method for Calculating Approximate Roots

The following example introduces the essential ideas of Newton's method.

Example 1 Consider the function $f(x) = x^3 - 12x + 5$. Its graph is given below.



The numbers c such that $f(c) = 0$ are called the *solutions*, or *roots*, of the equation $x^3 - 12x + 5 = 0$. They are the x -intercepts of the graph of f . To the nearest whole number, they are $c_1 \simeq 3$, $c_2 \simeq 0$ and $c_3 \simeq -4$. Newton's method is a procedure for calculating a better approximate solution, given an approximate solution. For example, the procedure enables us to calculate a better approximate solution of $x^3 - 12x + 5 = 0$, given the approximate solution $c_1 = 3$. The procedure is pretty straight-forward. We draw the tangent to the graph of f at $(3, f(3)) = (3, -4)$ then determine its x -intercept, which we may denote by x_1 . The graph below of a magnified section of the curve and its tangent at $(3, -4)$, shows clearly that x_1 is a better approximate solution than 3.



x_1 is nearer the solution than 3

In practice we do not draw the tangent. We simply determine its equation then calculate its x -intercept. Since $f'(x) = 3x^2 - 12$, its slope is $f'(3) = 3(3)^2 - 12 = 15$, therefore its equation is given by

$$y + 4 = 15(x - 3) \quad \text{or} \quad y = 15x - 49$$

Its x -intercept may be obtained by solving the equation

$$15x - 49 = 0$$

The result is $x_1 = \frac{49}{15}$. Since $f(\frac{49}{15}) = 0.66$, (to 2 decimal places), which is closer to zero than $f(3) = -4$, $x_1 = \frac{49}{15}$ is definitely a better approximate solution of the given equation than 3.

To generalize, suppose f is a given function and x_0 is an approximate solution of the equation $f(x) = 0$. (We are assuming that x_0 has been determined by some means, e.g. from a sketch of the graph of f .) Consider the tangent to the graph of f at $(x_0, f(x_0))$. Its slope is $f'(x_0)$, therefore its equation is

$$y = f(x_0) + (x - x_0) f'(x_0).$$

Denote its x -intercept by x_1 . Then under suitable conditions, x_1 is a better approximate solution of the equation $f(x) = 0$ than x_0 . You may determine x_1 by solving the equation

$$f(x_0) + (x - x_0) f'(x_0) = 0$$

Remove parentheses and rearrange to get $x f'(x_0) = x_0 f'(x_0) - f(x_0)$. Now divide by $f'(x_0)$, and you should get

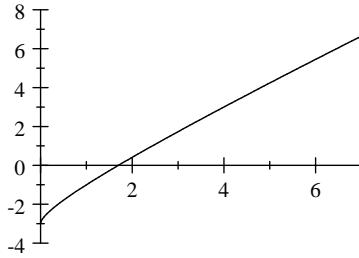
$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

We have therefore shown that:

- If x_0 is an approximate solution of the equation $f(x) = 0$, then $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ is generally a better approximate solution of the equation than x_0 . This procedure for calculating better approximate solutions is called Newton's method.

Exercise 2

1. The graph of $f(x) = \sqrt{x} + x - 3$ below shows that the equation $\sqrt{x} + x - 3 = 0$ has a solution close to 2. Use $x_0 = 2$ as an approximate solution



to calculate a better approximate solution. You can actually solve this equation using the quadratic formula. Solve it and compare the result to the approximate solution.

2. Use $x_0 = -4$ as an approximate solution to the equation $x^3 - 12x + 5 = 0$ of Example 1 to calculate a better approximate solution of the equation.
3. Let $f(x) = x^2 - 15$. We may view the square root of 15 as a solution to the equation $f(x) = 0$. Take $x_0 = 4$ as an approximate value of $\sqrt{15}$ and use Newton's method to calculate a better approximate value of $\sqrt{15}$.
4. Use a suitable function and follow the steps in question 3 above to determine an approximate value of $\sqrt[3]{29.2}$ with the help of Newton's method.
5. Show that if x_0 is a root of the equation $f(x) = 0$, then applying Newton's method to x_0 does not provide anything new.

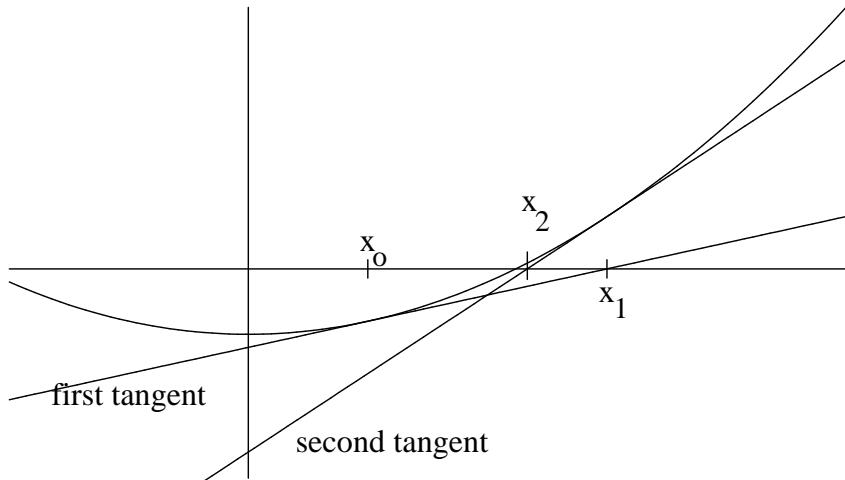
Repeated application of Newton's method

Consider a function f and the equation $f(x) = 0$. By Newton's method, if x_0 is an approximate solution of $f(x) = 0$ then a better approximate solution is

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

This is called the first iterate, or the first approximation given by Newton's method. It may be used to get an even better approximate solution x_2 , called the second iterate, or the second approximation. As you would expect, it is the x -intercept of the tangent at $(x_1, f(x_1))$ and it is given by

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$



This may be used to get a third approximation

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}.$$

In general, if you have an n th approximation x_n , you may calculate

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

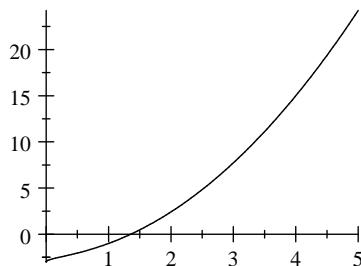
Example 3 Consider the approximate solution $x_1 = \frac{49}{15}$ for the equation $x^3 - 12x + 5 = 0$ in Example 1. We may use it to get an even better approximate solution x_2 given by

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = \frac{49}{15} - \frac{f(\frac{49}{15})}{f'(\frac{49}{15})} = \frac{49}{15} - \frac{(\frac{49}{15})^3 - 12(\frac{49}{15}) + 5}{3(\frac{49}{15})^2 - 12} = 3.2337 \text{ to 4 dec. pl.}$$

Since $f(3.2337) = (3.2337)^3 - 12(3.2337) + 5 = 0.009804$ and $f(x_1) = f(\frac{49}{15}) = 0.66$, x_2 is definitely a better approximate solution than x_1 . (Use x_2 to get x_3 .)

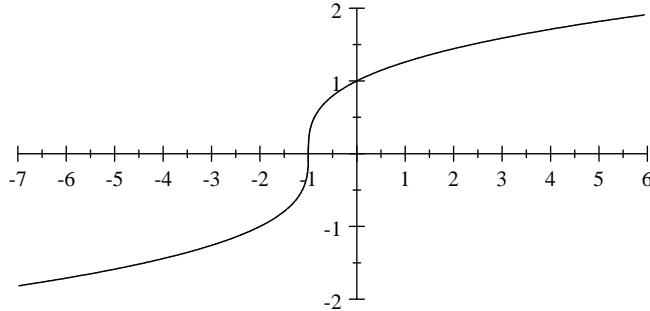
Exercise 4

1. The graph of $f(x) = \sqrt{x} + x^2 - 3$ is given below. It shows that $x_0 = 1$ is an approximate solution of the equation $f(x) = 0$. Use it to determine the first and second approximations x_1 , and x_2 respectively, given by Newton's method. Round off x_2 to 3 dec. pl.



2. Sketch the graph of $f(x) = x^3 + 3x^2 + 2$ and use it to verify that the equation $x^3 + 3x^2 + 2 = 0$ has one real root. Use the sketch to estimate the root then use Newton's method to determine two better approximations.

3. There is no guarantee that Newton's method will always work. For example, consider the equation $(x+1)^{1/3} = 0$. Of course we know its solution; it is $x = -1$. Pretend that you do not know it. The graph of $f(x) = (1+x)^{1/3}$ is given below.



Take $x_0 = 0$ as an approximate solution and determine x_1 . Next, use x_1 to determine x_2 . Also, draw the tangents at $(x_0, f(x_0))$ and $(x_1, f(x_1))$. Can you see why it fails in this case?

4. Say you want to calculate the root of $x^3 - 12x + 5 = 0$ in Example 1, which is close to 3, accurately to 5 decimal places. You compute x_1, x_2, x_3, \dots and stop when there is no change in the first five decimal places of your iterate. Recall that we found that $x_1 = \frac{49}{15} = 3.26666667$, and $x_2 = 3.23374046$. We calculate x_3 using the equation

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 3.233193843.$$

There is a change in the fourth decimal place so we compute x_4 . It turns out to be

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = 3.233193694.$$

Since there is no change in the first 5 decimal places, we stop. We give the root as 3.23319 correct to 5 decimal places.

Use a similar procedure to determine the root of $\sqrt{x} + x^2 - 3 = 0$ that is between 1 and 2, correct to 5 decimal places.

5. Consider the function $f(x) = x^3 + x - 3$. Since $f(1) = -1$ and $f(2) = 7$, the graph of f crosses the x -axis between $x = 1$ and $x = 2$. It follows that the equation $x^3 + x - 3 = 0$ has a root between 1 and 2. We may take $x = 1$ or $x = 2$ as an approximate root of this equation. But of the two, $x = 1$ is probably a better approximation because $f(1)$ is closer to 0 than $f(2)$. Use it to calculate the root correct to 2 decimal places.

6. Show that the equation $x^4 + x^3 + 4x - 1 = 0$ has a root between 0 and 1 then use Newton's method to calculate it accurately to 2 decimal places.