

1. Complete the table

Function	Derivative
$(3x^2 + 5)^8$	$8(3x^2 + 5)^7(3x) = 24x(3x^2 + 5)^7$
$\sqrt{x - \frac{1}{x}}$	$\frac{1}{2} \left(x - \frac{1}{x}\right)^{-\frac{1}{2}} \left(1 + \frac{1}{x^2}\right)$
$\frac{e^{2x}}{x} = x^{-1}e^{2x}$	$-x^{-2}e^{2x} + e^{2x}(2)(x^{-1}) = \left(\frac{2}{x} - \frac{1}{x^2}\right)e^{2x}$
$3x\sqrt{x^2 + 5}$	$3(x^2 + 5)^{\frac{1}{2}} + \frac{1}{2}(x^2 + 5)^{-\frac{1}{2}}(2x)(3x) = 3(x^2 + 5)^{\frac{1}{2}} + 3x^2(x^2 + 5)^{-\frac{1}{2}}$
$(4x + 1)^{3/2}$	$\frac{3}{2}(4x + 1)^{\frac{1}{2}}(4) = 6(4x + 1)^{\frac{1}{2}}$
$4x - \frac{1}{5}\cos 5x + c$	$4 + \sin 5x$
$3x - 2\sin \frac{1}{2}x + c$	$3 - \cos \frac{1}{2}x$
$[\ln(4x + 7)]^{3/4}$	$\frac{3}{4}[\ln(4x + 7)]^{-\frac{1}{4}}\left(\frac{4}{4x + 7}\right) = \left(\frac{3}{4x + 7}\right)[\ln(4x + 7)]^{-\frac{1}{4}}$
$\sec^2 4x + \tan 3x$	$2(\sec 4x)(\sec 4x \tan 4x)4 + (\sec^2 3x)3 = 8\sec^2 4x \tan 4x + 3\sec^2(3x)$
$x^3 e^{3x}$	$3x^2 e^{3x} + (e^{3x})(3)x^3 = 3(x^2 + x^3)e^{3x}$
$4\sin x \cos 2x \tan 3x$	$4\cos x \cos 2x \tan 3x - 8\sin x \sin 2x \tan 3x + 12\sin x \cos 2x \sec^2 3x$

2. Evaluate each definite integral:

$$a) \int_0^2 (x^3 - 3x^2 + 6x - 1) dx = \left[\frac{x^4}{4} - x^3 + 3x^2 - x \right]_0^2 = (4 - 8 + 12 - 2) - (0) = 6$$

$$b) \int_1^4 \left(\frac{2}{x} - \frac{4}{3x^2} + 6x^2 - 1 \right) dx = \left[2\ln x + \frac{4}{3x} + 2x^3 - x \right]_1^4 = 2\ln 4 + \frac{1}{3} + 128 - 4 - (0 + \frac{4}{3} + 2 - 1) \\ = 2\ln 4 - \frac{3}{3} + 124 - 1 = 2\ln 4 + 122 = \ln 16 + 122$$

$$c) \int_0^1 \left(\frac{x^2}{x^3 + 5} - 6e^x \right) dx = \left[\frac{1}{3} \ln(x^3 + 5) - 6e^x \right]_0^1 = \frac{1}{3} \ln 6 - 6e - \left(\frac{1}{3} \ln 5 - 6 \right) \\ = \frac{1}{3} \ln \frac{6}{5} - 6e + 6$$

$$\text{d)} \quad \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (3 - \sec^2 x - 2 \csc^2 x) dx = \left[3x - \tan x + 2 \cot x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \pi - \sqrt{3} + \frac{2}{\sqrt{3}} - \left(\frac{\pi}{2} - \frac{1}{\sqrt{3}} + 2\sqrt{3} \right)$$

$$= \frac{1}{3} \ln \frac{6}{5} - 6e + 6$$

$$\text{e)} \quad \int_0^{\pi/4} (2 + \sec x \tan x) dx = \left[2x - \sec x \right]_0^{\frac{\pi}{4}} = \frac{\pi}{2} - \sqrt{2} - (0 - 1) = \frac{\pi}{2} + 1 - \sqrt{2}$$

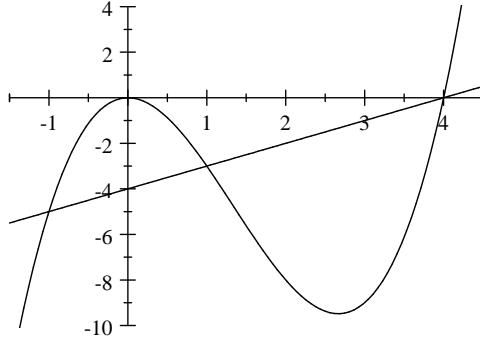
$$\text{f)} \quad \int_0^1 \left(\frac{3e^{2x}}{4} - \frac{1}{1+x^2} \right) dx = \left[\frac{3e^{2x}}{8} - \arctan x \right]_0^1 = \frac{3e}{8} - \arctan 1 - \left(\frac{3}{8} - 0 \right) = \frac{3}{8} (e - 1) - \frac{\pi}{4}$$

$$\text{g)} \quad \int_{-\pi/6}^{\pi/4} (\sin 2x + 3 \cos 2x - 1) dx = \left[-\frac{\cos 2x}{2} + \frac{3 \sin 2x}{2} - x \right]_{-\frac{\pi}{6}}^{\frac{\pi}{4}} = 0 + \frac{3}{2} - \frac{\pi}{4} - \left(\frac{1}{4} - \frac{3\sqrt{3}}{2} + \frac{\pi}{6} \right)$$

$$\frac{3}{2} + \frac{1}{4} + \frac{3\sqrt{3}}{2} - \frac{\pi}{4} - \frac{\pi}{6} = \frac{21 + 18\sqrt{3} - 5\pi}{12}$$

$$\text{h)} \quad \int_{-1}^{\frac{1}{2}} \left(8 - \frac{3}{\sqrt{1-x^2}} \right) dx = \left[8x - 3 \arcsin x \right]_{-1}^{\frac{1}{2}} = 4 - 3 \left(\frac{\pi}{6} \right) - \left(-8 + 3 \left(\frac{\pi}{2} \right) \right) = 12 - 2\pi$$

3. Let $f(x) = x^3 - 4x^2$ and $g(x) = x - 4$. Their graphs are given below



(a) Show that the graphs of f and g intersect at points where $x = -1$, $x = 1$ and $x = 4$.

Solution: Where the two graphs intersect, $x^3 - 4x^2 = x - 4$. The left hand side of the equation factors as $x^2(x - 4)$. Therefore

$$x^2(x - 4) = (x - 4) \quad \text{I.e.} \quad x^2(x - 4) - (x - 4) = 0, \text{ which is equivalent to } (x^2 - 1)(x - 4) = 0$$

This may be factored as $(x - 1)(x + 1)(x - 4) = 0$. Therefore, where they intersect, $x = -1$ or $x = 1$ or $x = 4$

(b) Calculate the area enclosed by the two graphs.

Solution: On the interval $[-1, 1]$, the graph of f is above the graph of g , therefore the area they enclose on this interval is

$$\begin{aligned} \int_{-1}^1 [f(x) - g(x)] dx &= \int_{-1}^1 [x^3 - 4x^2 - (x - 4)] dx = \left[\frac{x^4}{4} - \frac{4}{3}x^3 - \frac{x^2}{2} + 4x \right]_{-1}^1 \\ &= \frac{1}{4} - \frac{4}{3} - \frac{1}{2} + 4 - \left(\frac{1}{4} + \frac{4}{3} - \frac{1}{2} - 4 \right) = 8 - \frac{4}{3} = \frac{20}{3} \end{aligned}$$

On the interval $[1, 4]$, the graph of g is above the graph of f , therefore the area they enclose on this interval is

$$\begin{aligned}\int_{-1}^1 [g(x) - f(x)] dx &= \int_{-1}^1 [x - 4 - (x^3 - 4x^2)] dx = \left[\frac{x^2}{2} - 4x - \frac{x^4}{4} + \frac{4}{3}x^3 \right]_1^4 \\ &= 8 - 16 - 64 + \frac{256}{3} - \left(\frac{1}{2} - 4 - \frac{1}{4} + \frac{4}{3} \right) = \frac{63}{4}\end{aligned}$$

4. Show that substituting $u = 1 + x^2$ in the definite integral $\int x^5 \sqrt{1+x^2} dx$ gives

$$\frac{1}{2} \int (u-1)^2 \sqrt{u} du = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2}) du$$

(a) **Solution:** Let $u = 1 + x^2$. Then $\frac{du}{dx} = 2x$, therefore $dx = \frac{du}{2x}$. It follows that

$$x^5 \sqrt{1+x^2} dx = x^5 \sqrt{u} \frac{du}{2x} = x^4 \sqrt{u} \frac{du}{2}$$

To replace x in the expression $x^4 \sqrt{u} \frac{du}{2}$, use the substitution equation $u = 1 + x^2$ determine x^4 in terms of. Since $u = 1 + x^2$, it follows that $x^2 = (u-1)$, therefore $x^4 = (u-1)^2 = u^2 - 2u + 1$. We get $x^5 \sqrt{1+x^2} dx = (u^2 - 2u + 1) \sqrt{u} du$ which implies that

$$\int x^5 \sqrt{1+x^2} dx = \int (u^2 - 2u + 1) \sqrt{u} du = \int (u^{5/2} - 2u^{3/2} + u^{1/2}) du$$

To evaluate the definite integral $\int_0^{\sqrt{3}} x^5 \sqrt{1+x^2} dx$, use the above substitution. When $x = 0$, $u = 1$ and when $x = \sqrt{3}$, $u = 4$. Therefore

$$\begin{aligned}\int_0^{\sqrt{3}} x^5 \sqrt{1+x^2} dx &= \int_1^4 (u^{5/2} - 2u^{3/2} + u^{1/2}) du = \left[\frac{2}{7}u^{7/2} - \frac{4}{5}u^{5/2} + \frac{2}{3}u^{3/2} \right]_1^4 \\ &= \frac{2}{7}(128) - \frac{4}{5}(32) + \frac{2}{3}(8) - \left(\frac{2}{7} - \frac{4}{5} + \frac{2}{3} \right) = 16.15, \text{ to 2 dec. pl.}\end{aligned}$$

5. You have to evaluate the definite integral $\int_0^{\pi/3} x^2 \sin 2x dx$

(a) Use integration by parts to show that $\int x^2 \sin 2x dx = -\frac{x^2 \cos 2x}{2} + \int x \cos 2x dx$.

Solution: Using the integration by parts formula in the form $\int f(x)g'(x) dx = f(x)g(x) - \int g'(x)f(x) dx$ to $\int x^2 \sin 2x dx$, take $f(x) = x^2$ and $g'(x) = \sin 2x$. Then $f'(x) = 2x$ and $g(x) = -\frac{\cos 2x}{2}$. Therefore

$$\int x^2 \sin 2x dx = (x^2) \left(-\frac{\cos 2x}{2} \right) - \int \left(-\frac{\cos 2x}{2} \right) [2x] dx = -\frac{x^2 \cos 2x}{2} + \int x \cos 2x dx.$$

Applying the formula to $\int x \cos 2x dx$, take $f(x) = x$ and $g'(x) = \cos 2x$. Then $f'(x) = 1$ and $g(x) = \frac{\sin 2x}{2}$. Therefore

$$\int x \cos 2x dx =$$

(b) Use another integration by parts to show that $\int x \cos 2x dx = \frac{x \sin 2x}{2} - \int \frac{\sin 2x}{2}$.

Solution: To apply the formula to $\int x \cos 2x dx$, take $f(x) = x$ and $g'(x) = \cos 2x$. Then $f'(x) = 1$ and $g(x) = \frac{\sin 2x}{2}$. Therefore

$$\int x \cos 2x dx = (x) \left(\frac{\sin 2x}{2} \right) - \int \left(\frac{\sin 2x}{2} \right) (1) dx = \frac{x \sin 2x}{2} - \int \frac{\sin 2x}{2} = \frac{x \sin 2x}{2} + \frac{\cos 2x}{4}$$

It follows that

$$\int x^2 \sin 2x dx = -\frac{x^2 \cos 2x}{2} + \int x \cos 2x dx = -\frac{x^2 \cos 2x}{2} + \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} + c$$

(c) Finally, evaluate $\int_0^{\pi/3} x^2 \sin 2x dx$

Solution:

$$\begin{aligned} \int_0^{\pi/3} x^2 \sin 2x dx &= \left[-\frac{x^2 \cos 2x}{2} + \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} \right]_0^{\pi/3} \\ &= \frac{\pi^2}{36} + \frac{\sqrt{3}\pi}{12} - \frac{1}{8} - (0 + 0 + \frac{1}{4}) = \frac{2\pi^2 + 6\sqrt{3}\pi - 27}{72} \end{aligned}$$

6. You are given the function $f(x) = \frac{2}{x(x+2)}$.

(a) Split $\frac{2}{x(x+2)}$ into partial fractions then show that

$$\int \frac{2}{x(x+2)} = \ln \left| \frac{x}{x+2} \right| + c$$

Solution: $\frac{2}{x(x+2)} = \frac{A}{x} + \frac{B}{(x+2)}$. Multiply each term by $x(x+2)$ to clear fractions.

The result is

$$2 = A(x+2) + Bx$$

Substituting $x = 0$ gives $2 = 2A$, therefore $A = 1$. Substituting $x = -2$ gives $2 = -2B$, therefore $B = -1$. The conclusion is that $\frac{2}{x(x+2)} = \frac{1}{x} - \frac{1}{(x+2)}$, therefore

$$\int \frac{2}{x(x+2)} = \int \frac{1}{x} - \int \frac{1}{(x+2)} = \ln|x| - \ln|x+2| + c = \ln \left| \frac{x}{x+2} \right| + c$$

(b) Now show that $\int_1^{\infty} \frac{2dx}{x(x+2)} = \ln 3$

Solution: By definition, $\int_1^{\infty} \frac{2dx}{x(x+2)}$ is the limit of $\int_1^R \frac{2dx}{x(x+2)}$ as R approaches ∞ . Therefore

$$\begin{aligned} \int_1^{\infty} \frac{2dx}{x(x+2)} &= \lim_{R \rightarrow \infty} \int_1^R \frac{2dx}{x(x+2)} = \lim_{R \rightarrow \infty} \left[\ln \left| \frac{x}{x+2} \right| \right]_1^R = \lim_{R \rightarrow \infty} \left(\ln \left| \frac{R}{R+2} \right| - \ln \left| \frac{1}{3} \right| \right) \\ &= \ln 1 - \ln \left(\frac{1}{3} \right) = 0 - \ln \left(\frac{1}{3} \right) = \ln 3 \end{aligned}$$

7. You are required to evaluate the definite integral $\int_0^2 \frac{x^2}{\sqrt{16-x^2}} dx$

(a) Show that substituting $x = 4 \sin \theta$ into $\int_0^2 \frac{x^2}{\sqrt{16-x^2}} dx$ gives $16 \int_0^{\pi/6} \sin^2 \theta d\theta$.

Solution: Let $x = 4 \sin \theta$. Then $\frac{dx}{d\theta} = 4 \cos \theta$ and so $dx = 4 \cos \theta d\theta$. Therefore

$$\begin{aligned} \frac{x^2 dx}{\sqrt{16-x^2}} &= \frac{(16 \sin^2 \theta) (4 \cos \theta d\theta)}{\sqrt{16-16 \sin^2 \theta}} = \frac{(64 \sin^2 \theta) (\cos \theta d\theta)}{\sqrt{16(1-\sin^2 \theta)}} = \frac{(64 \sin^2 \theta) (\cos \theta d\theta)}{\sqrt{16 \cos^2 \theta}} \\ &= \frac{(64 \sin^2 \theta) (4 \cos \theta d\theta)}{4 \cos \theta} = 16 \sin^2 \theta d\theta \end{aligned}$$

When $x = 0$, then $0 = 4 \sin \theta$. This implies that $\sin \theta = 0$ and so $\theta = 0$. When $x = 2$, then $2 = 4 \sin \theta$. This implies that $\sin \theta = \frac{1}{2}$ and so $\theta = \frac{\pi}{6}$. Now the integral becomes

$$\int_0^2 \frac{x^2}{\sqrt{16-x^2}} dx = \int_0^{\pi/6} 16 \sin^2 \theta d\theta = 16 \int_0^{\pi/6} \sin^2 \theta d\theta$$

(b) Now show that $\int_0^2 \frac{x^2}{\sqrt{16-x^2}} dx = \frac{4\pi}{3} - 2\sqrt{3}$.

Solution:

$$\begin{aligned} \int_0^2 \frac{x^2}{\sqrt{16-x^2}} dx &= 16 \int_0^{\pi/6} \sin^2 \theta d\theta = 8 \int_0^{\pi/6} (1 - \cos 2\theta) d\theta = 8 \left[\theta - \frac{\sin 2\theta}{2} \right]_0^{\pi/6} \\ &= 8 \left(\frac{\pi}{6} - \frac{\sqrt{3}}{4} \right) - 8(0-0) = \frac{4\pi}{3} - 2\sqrt{3}. \end{aligned}$$

8. Show that substituting $u = 3x + 1$ into $\int \frac{x^2}{\sqrt{3x+1}} dx$ gives $\frac{1}{27} \int \frac{(u-1)^2}{\sqrt{u}} du$ then evaluate the definite integral

$$\int_0^5 \frac{x^2}{\sqrt{3x+1}} dx.$$

(a) **Solution:** Let $u = 3x + 1$. Then $\frac{du}{dx} = 3$ and so $dx = \frac{du}{3}$. Solving for x using the substitution equation $3x + 1 = u$ gives $x = \frac{u-1}{3}$. It follows that

$$\frac{x^2}{\sqrt{3x+1}} dx = \frac{\left(\frac{u-1}{3}\right)^2}{\sqrt{u}} \left(\frac{du}{3}\right) = \frac{(u-1)^3}{27\sqrt{u}} du$$

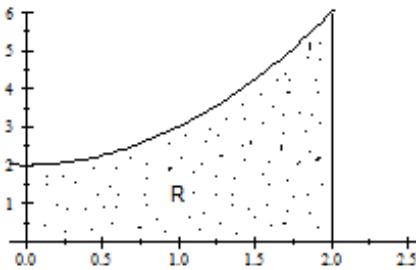
This implies that

$$\int \frac{x^2}{\sqrt{3x+1}} dx = \frac{1}{27} \int \frac{(u-1)^2}{\sqrt{u}} du = \frac{1}{27} \int \frac{(u^2 - 2u + 1)}{\sqrt{u}} du = \frac{1}{27} \int \left(u^{\frac{3}{2}} - 2u^{\frac{1}{2}} + u^{-\frac{1}{2}}\right) du$$

When $x = 0$, then $u = 1$ and when $x = 5$, then $u = 16$. Therefore the definite integral becomes

$$\begin{aligned} \int_0^5 \frac{x^2}{\sqrt{3x+1}} dx &= \frac{1}{27} \int_1^{16} \left(u^{\frac{3}{2}} - 2u^{\frac{1}{2}} + u^{-\frac{1}{2}}\right) du = \frac{1}{27} \left[\frac{2u^{\frac{5}{2}}}{5} - \frac{4u^{\frac{3}{2}}}{3} + 2u^{\frac{1}{2}} \right]_1^{16} \\ &= \frac{1}{27} \left(\frac{1024}{5} - \frac{256}{3} + 8 \right) - \frac{1}{27} \left(\frac{2}{5} - \frac{4}{3} + 2 \right) = \frac{632}{405} \end{aligned}$$

9. The figure below shows the region R enclosed by the graph of $f(x) = x^2 + 2$, the x -axis, the y -axis and the line $x = 2$. Sketch, to the right of the figure, the solid obtained by rotating R about the x -axis through four right angles, then calculate its volume.



(a) **Solution:** The volume V of the solid is given by the formula

$$\begin{aligned} V &= \pi \int_0^2 (x^2 + 2)^2 dx = \pi \int_0^2 (x^4 + 4x^2 + 4) dx \\ &= \pi \left[\frac{x^5}{5} + \frac{4x^3}{3} + 4x \right]_0^2 = \frac{376\pi}{15} \text{ cubic units} \end{aligned}$$

10. Let $f(x) = \frac{2}{3}x^{3/2}$. Calculate the length of the graph of f between $x = 0$ and $x = 8$.

(a) **Solution:** The length L of the graph is given by the formula

$$\begin{aligned} L &= \int_0^8 \sqrt{1 + (f'(x))^2} dx = \int_0^8 \sqrt{1 + \left(x^{\frac{1}{2}}\right)^2} dx = \int_0^8 \sqrt{1 + x} dx \\ &= \left[\frac{2}{3} (1+x)^{\frac{3}{2}} \right]_0^8 = \frac{2}{3} (9)^{\frac{3}{2}} - \frac{2}{3} (1)^{\frac{3}{2}} = \frac{52}{3} \text{ units} \end{aligned}$$

11. Show that substituting $x = \tan u$ into $\int \frac{1}{(1+x^2)^2} dx$ gives $\int \frac{du}{\sec^2 u} = \int \cos^2 u du$ then evaluate the definite integral

$$\int_0^1 \frac{1}{(1+x^2)^2} dx.$$

(a) **Solution:** Let $x = \tan u$. Then $\frac{dx}{du} = \sec^2 u$ and so $dx = \sec^2 u du$ and

$$\frac{1}{(1+x^2)^2} dx = \frac{\sec^2 u du}{(1+\tan^2 u)^2} = \frac{\sec^2 u du}{(\sec^2 u)^2} = \frac{\sec^2 u du}{\sec^4 u} = \frac{du}{\sec^2 u} = \cos^2 u du$$

Thus the substitution changes the integral into $\int \cos^2 u du$. When $x = 0$, then $\tan u = 0$ and so $u = 0$. When $x = 1$ then $\tan u = 1$ and so $u = \frac{\pi}{4}$. Therefore the definite integral $\int_0^1 \frac{1}{(1+x^2)^2} dx$ is transformed into

$$\int_0^1 \frac{1}{(1+x^2)^2} dx = \int_0^{\frac{\pi}{4}} \cos^2 u du = \frac{1}{2} \int_0^{\frac{\pi}{4}} (1 + \cos 2u) du = \left[\frac{1}{2} \left(u + \frac{\sin 2u}{2} \right) \right]_0^{\frac{\pi}{4}} = \frac{\pi}{4} - \frac{1}{4}$$

12. You are given the definite integral $\int_0^2 e^{-\frac{1}{2}x^2} dx$. (This was a quiz problem.)

(a) Estimate it using the trapezoidal rule with $n = 8$.
 (b) Estimate it using Simpson's rule with $n = 8$.
 (c) Estimate it using the midpoint rule, with $n = 8$.

13. Let $f(x) = 2\sqrt{x}$.

(a) Show that $\left(\sqrt{1 + [f'(x)]^2}\right) f(x) = 2\sqrt{x+1}$.

Solution: Since $f(x) = 2x^{\frac{1}{2}}$, it follows that $f'(x) = 2\left(\frac{1}{2}x^{-\frac{1}{2}}\right) = \frac{1}{\sqrt{x}}$, therefore

$$\begin{aligned}\left(\sqrt{1 + [f'(x)]^2}\right) f(x) &= \left(\sqrt{\left(1 + \frac{1}{x}\right)}\right) 2\sqrt{x} = (2\sqrt{x}) \sqrt{\frac{x+1}{x}} \\ &= (2\sqrt{x}) \frac{\sqrt{x+1}}{\sqrt{x}} = 2\sqrt{x+1}\end{aligned}$$

(b) Determine the area of the surface generated when the graph of f between $x = 0$ and $x = 3$ is rotated about the x -axis through 4 right angles.

Solution: The area A of the surface generated is given by the formula

$$\begin{aligned}A &= \int_0^3 \left(\sqrt{1 + [f'(x)]^2}\right) f(x) dx = \int_0^3 2\sqrt{x+1} dx = \left[\frac{4}{3}(x+1)^{\frac{3}{2}}\right]_0^3 \\ &= \frac{32}{3} - \frac{4}{3} = \frac{28}{3} \text{ square units.}\end{aligned}$$

14. You are given the rational function $f(x) = \frac{1}{(x+1)(2x+3)}$.

(a) Split it into partial fractions then show that $\frac{A}{(x+1)} + \frac{B}{(2x+3)} = \ln \left| \frac{x+1}{2x+3} \right| + c$.

Solution: $\frac{1}{(x+1)(2x+3)} = \frac{A}{(x+1)} + \frac{B}{(2x+3)}$. To clear fractions, multiply every term by $(x+1)(2x+3)$. The result is

$$1 = A(2x+3) + B(x+1)$$

Substituting $x = -1$ gives $1 = A(-2+3) = A$, therefore $A = 1$. Substituting $x = -\frac{3}{2}$ gives $1 = B(-\frac{1}{2})$, therefore $B = -2$. It follows that

$$\frac{1}{(x+1)(2x+3)} = \frac{1}{(x+1)} - \frac{2}{(2x+3)}$$

hence $\int \frac{1}{(x+1)(2x+3)} dx = \int \frac{1}{(x+1)} dx - \int \frac{2}{(2x+3)} dx$. These are both log integrals because the derivative of each denominator is the numerator. It follows that

$$\begin{aligned}\int \frac{1}{(x+1)(2x+3)} &= \int \frac{1}{(x+1)} dx - \int \frac{2}{(2x+3)} dx \\ &= \ln|x+1| - \ln|2x+3| + c = \ln \left| \frac{x+1}{2x+3} \right| + c.\end{aligned}$$

(b) Now show that $\int_0^\infty \frac{dx}{(x+1)(2x+3)} = \ln\left(\frac{1}{2}\right) - \ln\left(\frac{1}{3}\right) = \ln\left(\frac{3}{2}\right)$.

Solution: By definition, $\int_0^\infty \frac{dx}{(x+1)(2x+3)}$ is the limit of $\int_0^R \frac{dx}{(x+1)(2x+3)}$ as R approaches ∞ . Thus

$$\begin{aligned}\int_0^\infty \frac{dx}{(x+1)(2x+3)} &= \lim_{R \rightarrow \infty} \int_0^R \left(\frac{1}{(x+1)} - \frac{2}{(2x+3)} \right) dx = \lim_{R \rightarrow \infty} \left[\ln \left| \frac{x+1}{2x+3} \right| \right]_0^R \\ &= \lim_{R \rightarrow \infty} \left(\ln \left| \frac{R+1}{2R+3} \right| - \ln \left| \frac{1}{3} \right| \right) = \ln \left(\frac{1}{2} \right) - \ln \left(\frac{1}{3} \right) = \ln \left(\frac{3}{2} \right)\end{aligned}$$

15. Use the substitution $u = 1 + 3x^2$ to evaluate the definite integral $\int_0^1 x^3 \sqrt{1 + 3x^2} dx$.

(a) **Solution:** Let $u = 1 + 3x^2$. Then $\frac{du}{dx} = 6x$ and so $dx = \frac{du}{6x}$. It follows that

$$x^3 \sqrt{1 + 3x^2} dx = (x^3 \sqrt{u}) \frac{du}{6x} = x^2 \frac{\sqrt{u}}{6} du$$

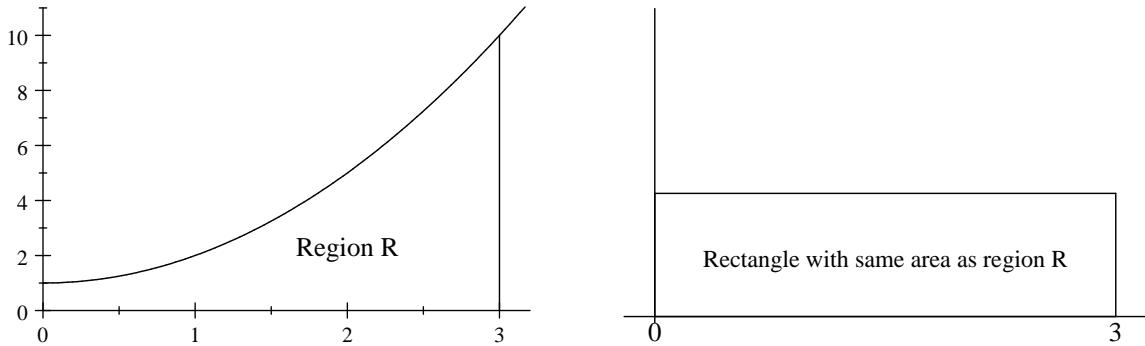
To replace x^2 , we use the substitution formula $u = 1 + 3x^2$. The result is $x^2 = \left(\frac{u-1}{3} \right)$. Therefore

$$x^3 \sqrt{1 + 3x^2} dx = \left(\frac{u-1}{18} \right) \sqrt{u} du = \left(\frac{u^{\frac{3}{2}} - u^{\frac{1}{2}}}{18} \right) du.$$

$u = 0 + 1 = 1$ when $x = 0$, and $u = 1 + 3 = 4$ when $x = 1$. Therefore the definite integral becomes

$$\begin{aligned}\int_0^1 x^3 \sqrt{1 + 3x^2} dx &= \frac{1}{18} \int_1^4 \left(u^{\frac{3}{2}} - u^{\frac{1}{2}} \right) du = \left[\frac{1}{18} \left(\frac{2u^{\frac{5}{2}}}{5} - \frac{2u^{\frac{3}{2}}}{3} \right) \right]_1^4 \\ &= \frac{1}{18} \left(\frac{64}{5} - \frac{16}{3} \right) - \frac{1}{18} \left(\frac{2}{5} - \frac{2}{3} \right) = \frac{116}{270}\end{aligned}$$

16. Let $f(x) = x^2 + 1$, for values of x between 0 and 3. Determine a number c between 0 and 3 such that the rectangle with base $[0, 3]$ and height $f(c)$ has the same area as the region R enclosed by the graph of f , the x -axis and the two lines $x = 0$ and $x = 3$.



(a) **Solution:** The area of the region R is $\int_0^3 (x^2 + 1) dx = \left[\frac{x^3}{3} + x \right]_0^3 = 12 - \frac{4}{3} = \frac{32}{3}$. The width of the rectangle is 3, therefore its height must be $\left(\frac{32}{3} \right) \div 3 = \frac{32}{9}$. Now we must find a number c between 0 and 3 where $f(c) = \frac{32}{9}$. It must satisfy the equation $x^2 + 1 = \frac{32}{9}$.

Solving gives $x = \pm\sqrt{\frac{32}{9}}$. We must choose the positive value because c is between 0 and 3.
 Therefore $c = \sqrt{\frac{32}{9}}$

17. Use the substitution $x = u^3$ to evaluate $\int_1^8 \left(\frac{1}{x + x^{1/3}} \right) dx$.

(a) **Solution:** Let $x = u^3$. Then $\frac{dx}{du} = 3u^2$, which implies that $dx = 3u^2 du$. It follows that

$$\left(\frac{1}{x + x^{1/3}} \right) dx = \frac{3u^2 du}{u^3 + u} = \frac{3u du}{u^2 + 1}$$

When $x = 1$, the substitution equation becomes $1 = u^3$, which implies that $u = 1$. When $x = 8$, the equation becomes $8 = u^3$, which implies that $u = 2$. Therefore the integral becomes

$$\int_1^8 \left(\frac{1}{x + x^{1/3}} \right) dx = \int_1^2 \frac{3u du}{u^2 + 1} = \frac{3}{2} \int_1^2 \frac{2u}{u^2 + 1} du$$

Since the numerator is the derivative of the denominator, this is a log integral and

$$\frac{3}{2} \int_1^2 \frac{2u}{u^2 + 1} du = \left[\frac{3}{2} \ln(u^2 + 1) \right]_1^2 = \frac{3}{2} (\ln 5 - \ln 2) = \frac{3}{2} \ln \left(\frac{5}{2} \right)$$

18. Use the substitution $x = u^2$ to evaluate $\int_4^9 \left(\frac{1}{x - x^{1/2}} \right) dx$. (The lower limit is changed to 4 to avoid an undefined value of logarithm at 0.)

(a) **Solution:** Let $x = u^2$. Then $\frac{dx}{du} = 2u$, which implies that $dx = 2u du$. It follows that

$$\left(\frac{1}{x - x^{1/2}} \right) dx = \frac{2u du}{u^2 - u} = \frac{2du}{u - 1}$$

When $x = 1$, the substitution equation gives $4 = u^2$, therefore $u = 2$. When $x = 9$, the equation gives $9 = u^2$ which implies that $u = 3$. Therefore the integral becomes

$$\int_4^9 \frac{1}{x - x^{1/2}} dx = \int_2^3 \frac{2du}{u - 1} = 2 \int_2^3 \frac{1}{u - 1} du = 2 \ln 2 - 2 \ln 1 = \ln 4$$

19. Let $f(x) = \frac{1}{\sqrt{1-x}} = (1-x)^{-1/2}$. Show that

$$f'(0) = \frac{1}{2}, \quad f''(0) = \frac{(1)(3)}{2^2}, \quad f'''(0) = \frac{(1)(3)(5)}{2^3}, \dots, \quad f^{(n)}(0) = \frac{(1)(3)(5)\cdots(2n-1)}{2^n}$$

(a) **Solution:** Take several derivatives and look out for a pattern.

20. Use the results of the above exercise to show that the Maclaurin series for $f(x) = \frac{1}{\sqrt{1-x}}$ is

$$1 + \sum_{n=1}^{\infty} \frac{(1)(3)(5)\cdots(2n-1)x^n}{(2^n)(n!)} \quad \text{9}$$

21. Use the Maclaurin series for $f(x) = \frac{1}{\sqrt{1-x}}$ in the above exercise to determine the Maclaurin series for $g(x) = \frac{1}{\sqrt{1-x^2}}$, then deduce the Maclaurin series for $h(x) = \arcsin x$.

(a) **Solution:** Replace x by t^2 in the above series to get

$$\frac{1}{\sqrt{1-t^2}} = 1 + \sum_{n=1}^{\infty} \frac{(1)(3)(5) \cdots (2n-1) t^{2n}}{(2^n)(n!)}.$$

Integrate both sides of the equation, (the variable is t), from 0 to x . The result is

$$\int_0^x \frac{1}{\sqrt{1-t^2}} dt = \int_0^x \left(1 + \sum_{n=1}^{\infty} \frac{(1)(3)(5) \cdots (2n-1) t^{2n}}{(2^n)(n!)} \right) dt$$

The left hand side is $\int_0^x \frac{1}{\sqrt{1-t^2}} dt = \left[\arcsin t \right]_0^x = \arcsin x - 0 = \arcsin x$. The right hand side is

$$\begin{aligned} \int_0^x \left(1 + \sum_{n=1}^{\infty} \frac{(1)(3)(5) \cdots (2n-1) t^{2n}}{(2^n)(n!)} \right) dt &= \left[t + \sum_{n=1}^{\infty} \frac{(1)(3)(5) \cdots (2n-1) t^{2n+1}}{(2^n)(n!)(2n+1)} \right]_0^x \\ &= x + \sum_{n=1}^{\infty} \frac{(1)(3)(5) \cdots (2n-1) x^{2n+1}}{(2^n)(n!)(2n+1)} \end{aligned}$$

Therefore

$$\arcsin x = x + \sum_{n=1}^{\infty} \frac{(1)(3)(5) \cdots (2n-1) x^{2n+1}}{(2^n)(n!)(2n+1)}$$